精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是(  )
A、3
B、2
2
C、2
D、
2
分析:由OP⊥PC,OP所在的直线过圆心,由垂径定理,我们可得PC为半弦长,延长CP后,根据相交弦定理,我们可以得到未知量PC与已知量AP、PB的关系,由此不难得到结论.
解答:解:如图,延长CP,交⊙O于D
精英家教网∵PC⊥OP
由垂径定理可得:
PC=PD
由相交弦定理得:
PA•PB=PC•PD=PC2
又由AP=4,PB=2
∴PC=2
2

故选B
点评:本题考查的知识点,是相交弦定理,但切入点是由已知的条件,OP⊥PC,OP所在直线过圆心,这是垂径定理的前提条件,由此想到延长PC,构造出两条相交的弦,故熟练掌握相关定理,包括前提条件在内,是解决问题的捷径.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题
如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(Ⅰ)求证:直线CE是⊙O的切线;(Ⅱ)求证:AC2=AB•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,点C是⊙O上的动点(异于A、B),过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)求证:直线ED⊥平面VBC;
(2)若VC=AB=2BC,求直线EO与平面VBC所成角大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AD=2,AC=
5
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,OA=2.
(1)求证:DC是⊙O的切线;
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的长.

查看答案和解析>>

同步练习册答案