精英家教网 > 高中数学 > 题目详情
(2013•江苏一模)(选修4-2:矩阵与变换)
已知矩阵A=
1a
c0
的一个特征值为λ1=-1,其对应的一个特征向量为α1=
-1
1
,已知β=
8
1
,求A5β.
分析:利用特征值、特征向量的定义,构建方程组,由此可求矩阵A.再求矩阵A的特征多项式,从而求得特征值与特征向量,利用矩阵A的特征值与特征向量,进而可求A5β.
解答:解:依题意:Aα1=-α1,…(4分)
1a
c0
-1′
1′
=-
-1
1

-1+a=1
-c=-1
,∴
a=2
c=1
…(8分)
A的特征多项式为f(λ)=(λ-1)λ-2=λ2-λ-2=0,
则λ=-1或λ=2.
λ=2时,特征方程
x-2y=0
-x+2y=0
,属于特征值λ=2的一个特征向量为
2′
1′

β=
8
1
=-2
-1′
1′
+3
2′
1′

∴A5β=-2×(-1)5
-1′
1′
+3×25
2′
1′
=
190′
98′
点评:本题考查待定系数法求矩阵,考查特征值与特征向量,理解特征值、特征向量的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江苏一模)已知cos(75°+α)=
1
3
,则cos(30°-2α)的值为
7
9
7
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)则
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为
3
+1
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)若对于给定的正实数k,函数f(x)=
k
x
的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为2,则k的取值范围是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},则?U(A∩B)=
{2,4,6}
{2,4,6}

查看答案和解析>>

同步练习册答案