精英家教网 > 高中数学 > 题目详情
一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.(方差Dξ=
ni=1
pi(ξi-Eξ)2
分析:(Ⅰ)解法一:利用古典概型概率公式求解;解法二:“有放回摸取”可看作独立重复实验,利用公式,可得结论;
(II)确定ξ的取值,求出相应的概率,即可求得它的期望和方差.
解答:(Ⅰ)解法一:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,
记“有放回摸球两次,两球恰好颜色不同”为事件A,…(2分)
∵“两球恰好颜色不同”共2×4+4×2=16种可能,…(4分)
P(A)=
16
6×6
=
4
9
.               …(6分)
解法二:“有放回摸取”可看作独立重复实验,…(2分)
∵每次摸出一球得白球的概率为P=
2
6
=
1
3
.           …(4分)
∴“有放回摸两次,颜色不同”的概率为P2(1)=
C
1
2
•p•(1-p)=
4
9
.      …(6分)
(Ⅱ)设摸得白球的个数为ξ,依题意得:
P(ξ=0)=
4
6
×
3
5
=
2
5
P(ξ=1)=
4
6
×
2
5
+
2
6
×
4
5
=
8
15
P(ξ=2)=
2
6
×
1
5
=
1
15
.…(9分)
∴它的分布列为
ξ 0 1 2
P
2
5
8
15
1
15
Eξ=0×
1
2
+1×
8
15
+2×
1
15
=
2
3
,…(12分)Dξ=(0-
2
3
)2×
2
5
+(1-
2
3
)2×
8
15
+(2-
2
3
)2×
1
15
=
16
45
.           …(14分)
点评:本题考查概率的计算,考查离散型随机变量的期望与方差,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖.
(I)试用n表示一次摸奖中奖的概率p;
(II)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为m,用p表示恰有一次中奖的概率m,求m的最大值及m取最大值时p、n的值;
(III)当n=15时,将15个红球全部取出,全部作如下标记:记上i号的有i个(i=1,2,3,4),共余的红球记上0号.并将标号的15个红球放人另一袋中,现从15个红球的袋中任取一球,ξ表示所取球的标号,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)一个口袋中装有大小相同的2个白球和4个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋中装有大小相同的8个白球和7个黑球,从中任意摸出2个球,则摸出的2个球至少有一个是白球的概率是
86
105
86
105
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖.
(1)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.试问当n等于多少时,P的值最大?
(2)在(1)的条件下,将5个白球全部取出后,对剩下的n个红球全部作如下标记:记上i号的有i个(i=1,2,3,4),其余的红球记上0号,现从袋中任取一球.ξ表示所取球的标号,求ξ的分布列,期望和方差.

查看答案和解析>>

同步练习册答案