精英家教网 > 高中数学 > 题目详情
(2009•孝感模拟)一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖.
(1)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.试问当n等于多少时,P的值最大?
(2)在(1)的条件下,将5个白球全部取出后,对剩下的n个红球全部作如下标记:记上i号的有i个(i=1,2,3,4),其余的红球记上0号,现从袋中任取一球.ξ表示所取球的标号,求ξ的分布列,期望和方差.
分析:(1)计算出从n+5个球中任取两个的方法数和其中两个球的颜色不同的方法,由古典概型公式,代入数据得到一次摸奖中奖的概率,再利用函数的单调性求出其最大值及相应的p值即可.
(2)所取球的标号为ξ,由题意知ξ的取值是0、1、2、3,4.本题是一个独立重复试验,根据上面的p值,代入公式得到结果,写出分布列,期望和方差.
解答:解:(1)一次摸奖从n+5个球中任取两个,有Cn+52种方法.它们是等可能的,其中两个球的颜色不同的方法有Cn1C51种,
一次摸奖中奖的概率P=
C
1
n
C
1
5
C
2
n+5
=
10n
(n+5)(n+4)
        …(2分)
设每次摸奖中奖的概率为p(0<p<1),三次摸奖中(每次摸奖后放回)恰有一次中奖的概率,
P=
C
1
3
×p×(1-p) 2
=3p3-6p2+3p
∴P′=9p2-12p+3=3(p-1)(3p-1),
由此知P在(0,
1
3
)
上为增函数,P在(
1
3
,1)
上为减函数,…(4分)
∴当p=
1
3
时P取得最大值,即p=
10n
(n+5)(n+4)
=
1
3

解得n=20或n=1(舍去),则当n=20时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大.…(6分)
(2)由(1)可知:记上0号的有10个红球,从中任取一球,有20种取法,它们是等可能的故ξ的分布列是
ξ 0 1 2 3 4
P
1
2
1
20
2
20
3
20
4
20
…(8分)
Eξ=0×
1
2
+1×
1
20
+2×
2
20
+3×
3
20
+4×
4
20
=
3
2
                                      …(10分)
Dξ=(0-
3
2
2×
1
2
+(1-
3
2
2×
1
20
+(2-
3
2
2×
2
20
+(3-
3
2
2×
3
20
+(4-
3
2
2×
4
20
=
11
4
      …(12分)
点评:本小题主要考查函数单调性的应用、等可能事件的概率、离散型随机变量的期望与方差等基础知识,求离散型随机变量期望的步骤:①确定离散型随机变量 的取值.②写出分布列,并检查分布列的正确与否,即看一下所有概率的和是否为1.③求出期望.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•孝感模拟)设全集U=R,A={x|2x(x+3)<1},B={x|y=ln(-1-x)},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知f(x)=x3-3x,过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)函数f(x)=
ln(2+x-x2)
|x|-x
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)某集团公司青年、中年、老年职员的人数之比为10:8:7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)有一块直角三角板,∠A=30°,∠C=90°,BC边在桌面上,当三角板所在平面与桌面成 45°角时,AB边与桌面所成角的正弦等于(  )

查看答案和解析>>

同步练习册答案