精英家教网 > 高中数学 > 题目详情
设函数定义在R上,对任意实数mn,恒有且当
(1)求证:f(0)=1,且当x<0时,fx)>1;
(2)求证:fx)在R上递减。
(1)证明:在fm+n)=fmfn)中,
m=1,n=0,得f(1)=f(1)f(0).
∵0<f(1)<1,∴f(0)=1…………………2分
x<0,则-x>0.令m=xn=-x,代入条件式有f(0)=fx)·f(-x),而f(0)=1,
fx)=>1……………………….6分
(2)证明:设x1x2,则x2x1>0,∴0<fx2x1)<1………………….8分
m=x1m+n=x2,则n=x2x1,代入条件式,得fx2)=fx1)·fx2x1),…10分
即0<<1.∴fx2)<fx1)……………….12分
fx)在R上单调递减………………….14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f()="0," 则满足的集合为                             (   )
A.(-∞,)∪(2,+∞)B.(,1)∪(1,2)
C.(,1)∪(2,+∞)D.(0,)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)定义在R上的函数,对任意的,满足,当时,有,其中.
(1)求的值;
(2)求的值并判断该函数的奇偶性;
(3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,若,则的所有可能值为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四个函数(1)(2)(3)(4)的图象如下:


 
(1)                  (2)            (3)              (4)
则下等式中可能成立的是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(2x+1)=x2-2x,则f(5) =               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则]的值为   (     )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示,b两数中的最小值。若函数=的图像关于直线=对称,则的值为
A.-2B.2 C.-1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,函数满足:,且,则                             (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案