已知f(x)=x2+2x-5,x∈[t,t+1],若f(x)的最小值为h(t),写出h(t)的表达式.
解析:设g(x)=x2+2ax+4,
由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,
所以函数g(x)的图象开口向上且与x轴没有交点,
故Δ=4a2-16<0,∴-2<a<2. 又∵函数f(x)=(3-2a)x是增函数,∴3-2a>1,∴a<1.
解:∵函数图象的对称轴为x=-1,
(1)当t+1≤-1,即t≤-2时,
h(t)=f(t+1)=(t+1)2+2(t+1)-5,
即h(t)=t2+4t-2(t≤-2).
(2)当t≤-1<t+1,即-2<t≤-1时,
h(t)=f(-1)=-8.
(3)当t>-1时,h(t)=f(t)=t2+2t-5.
综上可得,h(t)=
【解析】略
科目:高中数学 来源:2010-2011年江西省德兴一中高二下学期第一次月考数学文卷 题型:解答题
(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三单元测试文科数学试卷 题型:解答题
已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题
(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com