精英家教网 > 高中数学 > 题目详情

已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.

 

【答案】

解 设g(x)=ax+b(a≠0),则f[g(x)]=(ax+b)2-2(ax+b)+1=a2x2+(2ab-2a)x+b2-2b+1=4x2.

解得a=±2,b=1

 

 

∴g(x)=2x+1或g(x)=-2x+1.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江西省德兴一中高二下学期第一次月考数学文卷 题型:解答题

(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2012届度辽宁省沈阳市高三数学质量检测试卷 题型:解答题

已知f(x)=x2+2x-5,x∈[tt+1],若f(x)的最小值为h(t),写出h(t)的表达式.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市高一上学期期中考试数学试卷 题型:填空题

已知f(x)=x2axb,满足f(1)=0,f(2)=0,则f(-1)=      ▲     

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题

(本小题满分14分)

                                                                                                                              

已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).

(1)求f(x)的解析式;

(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;

(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.

 

 

查看答案和解析>>

同步练习册答案