精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:当n为正整数时,13+23+33+…+n3=
n2(n+1)24
分析:用数学归纳法证明:(1)当n=1时,去证明等式成立;(2)假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.
解答:证明:(1)当n=1时,左边=1,右边=
12×22
4
=1,
∴等式成立…2分
(2)假设当n=k时,等时成立,即13+23+33+…+k3=
k2(k+1)2
4
…4分
那么,当n=k+1时,有13+23+33+…+k3+(k+1)3=
k2(k+1)2
4
+(k+1)3…6分
=(k+1)2•(
k2
4
+k+1)
=(k+1)2
k2+4k+4
4

=
(k+1)2(k+2)2
4

=
(k+1)2[(k+1)+1]2
4
…8分
这就是说,当n=k+1时,等式也成立…9分
根据(1)和(2),可知对n∈N*等式成立…10分
点评:本题考查数学归纳法,用好归纳假设是关键,考查逻辑推理与证明的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-
1
n+3
)n
1
2
,求证(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求证:函数f(x)的图象关于点A(1,
4
3
)
中心对称,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)设g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求证:
(ⅰ)请用数学归纳法证明:当n≥2时,1<an
3
2

(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)设f(n)=1+
1
2
+
1
3
+…+
1
n
,用数学归纳法证明:当n≥2,n∈N*时,n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:当n为正奇数时,xn+yn能被x+y整除,第二步的假设应写成
假设n=2k-1,k∈N*时命题正确,即当n=2k-1,k∈N*时,x2k-1+y2k-1能被x+y整除
假设n=2k-1,k∈N*时命题正确,即当n=2k-1,k∈N*时,x2k-1+y2k-1能被x+y整除

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:当n为正奇数时,xn+yn能被x+y整除,第二步的假设应写成假设n=
2k-1
2k-1
,k∈N*时命题正确,再证明n=
2k+1
2k+1
,k∈N*时命题正确.

查看答案和解析>>

同步练习册答案