精英家教网 > 高中数学 > 题目详情

在数列{an}中,Sn为其前n项和,数学公式
(I)求证:a2,a3,a4,…,an为等比数列;
(II)设bn=nan,Tn=b1+b2+b3+…+bn,求Tn的值.

解:(I)由已知,a1=1,an+1=3Sn=Sn+1-Sn得4Sn=Sn+1
所以,即{Sn}是首项为1,公比为4的等比数列,
所以Sn=1×4n-1=4n-1
又由公式
得到an=
故当n≥2时,
∴a2,a3,a4,…,an为等比数列.
(II)∵bn=nan=
∴当n=1时,Tn=1;
∴当n≥2时,
Tn=1+6×40+9×41+…+3n×4n-2
∴4Tn=4+6×41+9×42+…+3n×4n-1
两式相减得-3Tn=3+3•41+3•42+…+3•4n-2-3n×4n-1
∴Tn=[(3n-1)×4n-1+1],
又当n=1时,T1=1也适合上式,
故Tn=[(3n-1)×4n-1+1],(n∈N*).
分析:(I)这是一道典型的含有an+1,Sn的递推公式来求通项公式的题目,利用公式,本题是先求出Sn,再由Sn求出an,要注意对n=1和n≥2进行讨论.最后证明从第二项开始是等比数列;
(II)求出bn,据其特点是由一个等差数列与一个等比数列的乘积构成,利用错位相减法求出数列的前n项和.
点评:本题属于基础题目,运算上较为容易,另外需注意求出Sn之后,只要注意讨论n=1和n≥2的情形,进一步求出{an}的通项公式,用到的思想方法是分段讨论法.(II)求数列的前n项和,首先求出数列的通项,根据数列通项的特点,选择合适的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果由数列{an}生成的数列{bn}满足对任意的n∈N*均有bn+1<bn,其中bn=an+1-an,则称数列{an}为“Z数列”.
(Ⅰ)在数列{an}中,已知an=-n2,试判断数列{an}是否为“Z数列”;
(Ⅱ)若数列{an}是“Z数列”,a1=0,bn=-n,求an
(Ⅲ)若数列{an}是“Z数列”,设s,t,m∈N*,且s<t,求证:at+m-as+m<at-as

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若对于任意的n∈N*,总有
n+2
n(n+1)
=
A
n
+
B
n+1
成立,求常数A,B的值;
(2)在数列{an}中,a1=
1
2
an=2an-1+
n+2
n(n+1)
(n≥2,n∈N*),求通项an
(3)在(2)题的条件下,设bn=
n+1
2(n+1)an+2
,从数列{bn}中依次取出第k1项,第k2项,…第kn项,按原来的顺序组成新的数列{cn},其中cn=bkn,其中k1=m,kn+1-kn=r∈N*.试问是否存在正整数m,r使
lim
n→+∞
(c1+c2+…+cn)=S
4
61
<S<
1
13
成立?若存在,求正整数m,r的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几种推理过程是演绎推理的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+
2
,S3=12+3
2

(1)求数列{an}的通项公式an及前n项和Sn
(2)记bn=an-
2
,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且b n1,b n2,…,b nk,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三元月双周练习数学试卷 题型:解答题

(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+

(1)求数列{an}的通项公式an及前n项和Sn

(2)记bn=an,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);

(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案