精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.
(Ⅰ)(Ⅱ),或,或,或.
(Ⅰ)由,得.故圆C的圆心为点
从而可设椭圆E的方程为其焦距为,由题设知
故椭圆E的方程为:
(Ⅱ)设点的坐标为的斜分率分别为的方程分别为与圆相切,得,即
同理可得.
从而是方程的两个实根,于是
       ①

解得
它们满足①式,故点P的坐标为
,或,或,或.
【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问根据条件设出椭圆方程,求出即得椭圆E的方程,第二问设出点P坐标,利用过P点的两条直线斜率之积为,得出关于点P坐标的一个方程,利用点P在椭圆上得出另一方程,联立两个方程得点P坐标.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时,是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设点P是椭圆上的一点,点M、N分别是两圆:上的点,则的最小值、最大值分别为(    )
A.6,8B.2,6
C.4,8D.8,12

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 已知A(m,o),2,椭圆=1,p在椭圆上移动,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左、右焦点分别为,下顶点为,点是椭圆上任一点,圆是以为直径的圆.
⑴当圆的面积为,求所在的直线方程;
⑵当圆与直线相切时,求圆的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)的直线L与椭圆C相交于A、B两点.
(1).求椭圆C的方程;
(2).求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上存在一点P,使得点P到两焦点的距离之比为,则此椭圆离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆有公共的焦点F1,F2,P是两曲线的一个交点,则=(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案