精英家教网 > 高中数学 > 题目详情
如图,已知椭圆的左、右焦点分别为,下顶点为,点是椭圆上任一点,圆是以为直径的圆.
⑴当圆的面积为,求所在的直线方程;
⑵当圆与直线相切时,求圆的方程;
;⑵.
(1) 设,先求出,进而根椐圆的面积为,建立方程,解出,进而确定.PA的直线方程易求.
(2) 直线的方程为,且到直线的距离为
,得到,再根据点P在椭圆上满足,两方程联立可得M的坐标,到此问题基本得到解决.
解:⑴易得,设

, ………………2
又圆的面积为,∴,解得,   ∴
所在的直线方程为;……………5
⑵∵直线的方程为,且到直线的距离为
,  化简得,………………………6
联立方程组,解得.    ………………………10
时,可得,  ∴ 圆的方程为;………11
时,可得, ∴ 圆的方程为;…12
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的左、右顶点,直线轴交于点,点是椭圆上异于
的动点,直线分别交直线两点.证明:恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段为直径的圆经过焦点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆离心率为,且经过点,过椭圆的左焦点作直线交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。 
(1)求椭圆E的方程
(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率
(3)是否存在直线,使得四边形OAPB为矩形?若存在,求出直线的方程。若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F是椭圆的右焦点,过原点的直线交椭圆于点A、P,PF垂直于x轴,直线AF交椭圆于点B,,则该椭圆的离心率=___▲___.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的离心率为,则实数的值为___________.              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的不垂直于对称轴的弦,的中点,为坐标原点,则____________

查看答案和解析>>

同步练习册答案