12£®Èçͼ£¬±ß³¤Îª1Õý·½ÐÎABCDÖУ¬·Ö±ðÔÚ±ßBC¡¢ADÉϸ÷ȡһµãMÓëN£¬ÏÂÃæÓÃËæ»úÄ£ÄâµÄ·½·¨¼ÆËã|MN|£¾1.1µÄ¸ÅÂÊ£®ÀûÓüÆËã»úÖеÄËæ»úº¯Êý²úÉúÁ½¸ö0¡«1Ö®¼äµÄËæ»úʵÊýx£¬y£¬ÉèBM=x£¬AN=y£¬Ôò¿ÉÈ·¶¨M¡¢NµãµÄλÖ㬽ø¶ø¼ÆËãÏß¶ÎMNµÄ³¤¶È£®Éèx£¬y×é³ÉÊý¶Ô£¨x£¬y£©£¬¾­Ëæ»úÄ£Äâ²úÉúÁË20×éËæ»úÊý£º
£¨0.82£¬0.28£©£¨0.47£¬0.38£©£¨0.71£¬0.62£©£¨0.68£¬0.83£©£¨0.66£¬0.63£©
£¨0.66£¬0.18£©£¨0.01£¬0.35£©£¨0.59£¬0.06£©£¨0.28£¬0.22£©£¨0.27£¬0.05£©
£¨0.98£¬0.32£©£¨0.92£¬0.99£©£¨0.70£¬0.49£©£¨0.38£¬0.60£©£¨0.06£¬0.78£©
£¨0.24£¬0.46£©£¨0.17£¬0.75£©£¨0.77£¬0.59£©£¨0.15£¬0.98£©£¨0.63£¬0.78£©
ͨ¹ýÒÔÉÏÄ£ÄâÊý¾Ý£¬¿ÉµÃµ½¡°|MN|£¾1.1¡±µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®0.3B£®0.35C£®0.65D£®0.7

·ÖÎö ÓÉÌâÒ⣬¾­Ëæ»úÄ£Äâ²úÉúÁËÈçÏÂ20×éËæ»úÊý£¬Âú×ãÌâÒ⣬¿ÉÒÔͨ¹ýÁоٵõ½¹²7×éËæ»úÊý£¬¸ù¾Ý¸ÅÂʹ«Ê½£¬µÃµ½½á¹û£®

½â´ð ½â£ºÓÉÌâÒ⣬|MN|=$\sqrt{1+£¨y-x£©^{2}}$£¾1.1£¬¡à£¨y-x£©2£¾0.21£¬
20×éËæ»úÊý£¬Âú×ãÌâÒâµÄÓУ¨0.82£¬0.28£©£¬£¨0.66£¬0.18£©£¬£¨0.59£¬0.06£©£¬£¨0.98£¬0.32£©£¬£¨0.06£¬0.78£©£¬£¨0.17£¬0.75£©£¬£¨0.15£¬0.98£©£¬¹²7¸ö£¬
¡à¡°|MN|£¾1.1¡±µÄ¸ÅÂÊÊÇ$\frac{7}{20}$=0.35£¬
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÄ£Äâ·½·¨¹À¼Æ¸ÅÂÊ£¬ÊÇÒ»¸ö»ù´¡Ì⣬½âÕâÖÖÌâÄ¿µÄÖ÷ÒªÒÀ¾ÝÊǵȿÉÄÜʼþµÄ¸ÅÂÊ£¬×¢ÒâÁоٷ¨ÔÚ±¾ÌâµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®µÈ±ÈÊýÁÐ{an}ÖУ¬a3=8ǰÈýÏîºÍΪS3=24£¬Ôò¹«±ÈqµÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®-$\frac{1}{2}$C£®-1»ò-$\frac{1}{2}$D£®1»ò-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={-1£¬1}£¬B={∅£¬{-1}£¬{1}£¬{-1£¬1}}£¬ÔòAÓëBµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®A⊆BB£®A¡ÊBC£®AÓëBÎÞ¹ØÏµD£®A?B

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôP¡¢Q¡¢RÊDZ߳¤Îª1µÄÕý¡÷ABC±ßBCÉϵÄËĵȷֵ㣬Ôò$\overrightarrow{AB}$•$\overrightarrow{AP}$+$\overrightarrow{AP}$•$\overrightarrow{AQ}$+$\overrightarrow{AQ}$•$\overrightarrow{AR}$+$\overrightarrow{AR}$•$\overrightarrow{AC}$=$\frac{13}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬OΪµ×ÃæABCDµÄÖÐÐÄ£¬P¡¢Q·Ö±ðÊÇÀâDD1¡¢CC1µÄÖе㣮
£¨1£©»­³öÃæD1BQÓëÃæABCDµÄ½»Ïߣ¬¼òÊö»­·¨¼°È·¶¨½»ÏßµÄÒÀ¾Ý£®£¨2£©ÇóÖ¤£ºÆ½ÃæD1BQ¡ÎÆ½ÃæPAO£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®±àºÅ·Ö±ðΪA1£¬A2£¬A3£¬¡­£¬A12µÄ12ÃûÀºÇòÔ˶¯Ô±ÔÚij´ÎÀºÇò±ÈÈüÖеĵ÷ּǼÈçÏ£º
Ô˶¯Ô±±àºÅA1A2A3A4A5A6A7A8A9A10A11A12
µÃ·Ö5101216821271562218
£¨1£©Íê³ÉÈçÏÂµÄÆµÂÊ·Ö²¼±í£º
µÃ·ÖÇø¼äƵÊýƵÂÊ
[0£¬10£©3$\frac{1}{4}$
[10£¬20£©  
[20£¬30£©  
ºÏ¼Æ121.00
£¨2£©´ÓµÃ·ÖÔÚÇø¼ä[10£¬20£©ÄÚµÄÔ˶¯Ô±ÖÐËæ»ú³éÈ¡2ÈË£¬ÇóÕâ2È˵÷ÖÖ®ºÍ´óÓÚ30µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®µ±x¡Ê£¨1£¬3£©Ê±£¬¹ØÓÚxµÄ²»µÈʽx2-2x-1£¼logaxºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ1£¼a¡Ü$\sqrt{3}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{2}$cos£¨x+$\frac{¦Ð}{12}$£©£¬x¡ÊR£®
£¨1£©Çóf£¨$\frac{7¦Ð}{12}$£©µÄÖµ£»
£¨2£©Èôcos¦È=$\frac{3}{5}$£¬¦È¡Ê£¨-$\frac{¦Ð}{2}$£¬0£©£¬Çóf£¨2¦È-$\frac{¦Ð}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èô±äÁ¿a£¬bÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{a¡Ý1}\\{a{b}^{3}¡Ý81}\\{{a}^{3}b¡Ü81}\end{array}\right.$£¬Çóu=$\frac{{a}^{2}}{b}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸