精英家教网 > 高中数学 > 题目详情

已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 

⑴试求f(2)的值;

⑵证明f(x)在(1,+∞)上单调递增;

⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.

 

【答案】

1)f(2)=0;   2) 见解析;

3)存在实数a∈(1,9),使得对任意的θ∈(0,π)恒成立.

【解析】

试题分析:(1)根据对任意的正实数x,y都有均有f(x+1)+f(y+1)=f(xy+1),令x=1,y=1,即可求出f(2)的值;

(2)由于函数没有具体解析式,要证其在(1,+∞)上为增函数,只能从条件;②对任意的x>2均有f(x)>0和条件③对任意的x>0,y>0,均有f(x+1)+f(y+1)=f(xy+1)入手,取代入条件③,整理变形后借助于条件②可证出结论.

(3)令x=2,y=2,代入求得f(5),令x=2,y=4,代入求得f(9),

,可得,根据条件②判断函数的单调性,根据已知条件把f(cos2θ+asinθ)<3化为cos2θ+asinθ<或1<cos2θ+asinθ<9,对任意的θ∈(0,π)恒成立,换元和分离参数即可求得a的范围..

1)令X=Y=1得f(2)+f(2)=f(2),∴f(2)=0…………(2分)

   2) 任取X1>1,X2>1,X2>X1则有   从而

∴f(x)在(1,+∞)上单调递增……………(8分)

3)因为f(x)为奇函数,且在(1,+∞)上单调递增,令X=Y=2,得f(5)=f(3)+f(3)=2,再令X=2,Y=4,得f(9)=f(3)+f(5)=3,

因为f(x)为奇函数,所以,于是f(x)<3的解集为;

(-∞,-)∪(1,9),于是问题转化为是否存在实数a,使对任意的θ∈(0,π)恒成立,令sinθ=t,则t∈(0,1]于是恒成立等价于恒成立.即恒成立,当t→0时,,故不存在实数a使对任意的

θ∈(0,π)恒成立.

1<cos2θ+asinθ<9恒成立等价于恒成立,得a>1,

t2-at+8>0,t∈(0,1]等价于在(0,1]单调递减,于是g(t)min=9,故a<9  于是存在a∈(1,9)使1<cos2θ+asinθ<9 对任意的θ∈(0,π)恒成立.

综上知,存在实数a∈(1,9),使得对任意的θ∈(0,π)恒成立.……………………(14分).

考点:抽象函数的奇偶性,单调性,函数恒成立问题.

点评:此题是个难题,考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.特别是问题(3)的设问形式,增加了题目的难度,综合性强.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x),对一切x、y>0,恒有f(x+y)=f(x)+f(y)成立,且x>0时,f(x)<0.
(1)求证:f(x)在(0,+∞)上是减函数.
(2)f(2)=-
12
时,解不等式f(ax+4)>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知定义在R上的单调函数f(x)满足:存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,则(i)f(1)+f(0)=
0
(ii)x0的值为
1

查看答案和解析>>

科目:高中数学 来源: 题型:

1、已知定义在R上的函数表达式为f(x)=2x,则f(0.5)=
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),满足条件:①f(x)+f(-x)=2,②对非零实数x,都有2f(x)+f(
1
x
)=2x+
1
x
+3

(1)求函数f(x)的解析式;
(2)设函数g(x)=
f2(x)-2x
  (x≥0)
,直线y=
2
 n-x
与函数y=g(x)交于An,又Bn为An关于直线y=x的对称点,(其中n∈N*),求|AnBn|;
(3)设an=|AnBn|,Sn为数列{an}的前n项和,求证:当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(-1,1)上的奇函数f(x),在定义域上为减函数,且f(1-a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案