精英家教网 > 高中数学 > 题目详情
已知定义在(0,+∞)上的函数f(x),对一切x、y>0,恒有f(x+y)=f(x)+f(y)成立,且x>0时,f(x)<0.
(1)求证:f(x)在(0,+∞)上是减函数.
(2)f(2)=-
12
时,解不等式f(ax+4)>-1.
分析:(1)任取两个变量且界定大小,由主条件将f(x2)-f(x1)变形为f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1
=f(x2-x1)再利用x>0时,f(x)<0得证.
(2)将原不等式转化为f(ax+4)>f(2+2)=f(4)由(1)知f(x)在(0,+∞)上为减函数,得到0<ax+4<4,再按照一元一次不等式求解.
解答:解:(1)任取0<x1<x2<+∞,则x2-x1>0
∴f(x2-x1)<0,
∴f(x2)-f(x1
=f(x2-x1+x1)-f(x1
=f(x2-x1)+f(x1)-f(x1
=f(x2-x1)<0
∴f(x2)<f(x1
∴f(x)在(0,+∞)上是减函数.

(2)∵f(2)+f(2)=-1
∴f(ax+4)>f(2+2)=f(4)
由(1)知f(x)在(0,+∞)上为减函数,∴0<ax+4<4
当a>0时,解得-
4
a
<x<0

当a<0时,解得0<x<-
4
a

当a=0时,无解
点评:本题主要考查抽象函数证明单调性问题和应用单调性解抽象不等式问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正确结论的序号是
 
(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x)=
(4k-1)ln
1
x
,x∈(0 , e]
kx2-kx,x∈(e , +∞)
是增函数
(1)求常数k的取值范围
(2)过点(1,0)的直线与f(x)(x∈(e,+∞))的图象有交点,求该直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的三个函数f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(Ⅰ)求函数g(x)在x=2处的切线方程;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点个数,并说明理由.
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.
作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)的单调函数f(x)满足:对任意正数x,都有f[f(x)-
1
x
]=2,则f(
1
5
)=(  )

查看答案和解析>>

同步练习册答案