精英家教网 > 高中数学 > 题目详情
(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
分析:根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1.根据函数奇偶性的定义,可得f(x)是偶函数,①正确;根据函数的表达式,结合有理数和无理数的性质,得②正确;取x1=-
3
3
,x2=0,x3=
3
3
,可得A(
3
3
,0)、B(0,1)、C(-
3
3
,0)三点恰好构成等边三角形,得③正确.
解答:解:∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0
∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,ff((x))=f(0)=1
即不管x是有理数还是无理数,均有f(f(x))=1
接下来判断三个命题的真假
对于①,因为有理数的相反数还是有理数,无理数的相反数还是无理数,
所以对任意x∈R,都有f(-x)=-f(x),故①正确;
对于②,若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数
∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故②正确;
对于③,取x1=-
3
3
,x2=0,x3=
3
3
,可得f(x1)=0,f(x2)=1,f(x3)=0
∴A(
3
3
,0),B(0,1),C(-
3
3
,0),恰好△ABC为等边三角形,故③正确.
故答案为:1     ①②③
点评:本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•海淀区一模)执行如图所示的程序框图,输出的k值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)过双曲线
x2
9
-
y2
16
=1
的右焦点,且平行于经过一、三象限的渐近线的直线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)复数
a+2i1-i
在复平面内所对应的点在虚轴上,那么实数a=
2
2

查看答案和解析>>

同步练习册答案