精英家教网 > 高中数学 > 题目详情
从圆(x-1)2+y2=1外一点P(2,4)引这个圆的切线,则此切线方程为
 
考点:圆的切线方程
专题:直线与圆
分析:由题意画出图形,分切线的斜率存在和不存在求切线方程,当斜率存在时由圆心到切线的距离等于半径求得切线的斜率,则答案可求.
解答: 解:如图,

当切线的斜率不存在时,切线方程为x=2;
当切线的斜率存在时,设斜率为k,则切线方程为y-4=k(x-2),即kx-y-2k+4=0.
由圆心M(1,0)到切线的距离等于半径得:
|k-2k+4|
k2+1
=1
,解得k=
15
8

∴斜率存在时的切线方程为15x-8y+2=0.
故答案为:x=2或15x-8y+2=0.
点评:本题考查了圆的切线方程,考查了直线和圆的位置关系,解答直线与圆的切线问题,一般用圆心到直线的距离等于半径解决,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(
1
2
+
1
2
ax)+x2-ax(a为常数,a>0).
(1)若x=-
1
2
是函数f(x)的一个极值点,求a的值;
(2)求证:当0<a≤2时,f(x)在[
1
2
,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体的四个顶点构成的几何体的三视图如图,若各视图均为边长为2的正方形,则这个几何体的体积是(  )
A、
4
3
B、
8
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(2sinx-
3
)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=2x2-1在[1,3]上的最小值是
 
,最大值为
 
,值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=2sin(x+m-
π
6
)的图象关于y轴对称,则实数m(m>0)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是半圆O的直径,AB=8,M,N,P是将半圆圆周四等分的三个分点,从A,B,M,N,P这5个点中任取3个点,则这3个点组成直角三角形的概率为(  )
A、
7
10
B、
1
2
C、
3
10
D、
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

过定点(1,2)一定可作两条直线与圆x2+y2+kx+2y+k2-15=0相切,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是 (  )
A、等腰三角形
B、直角三角形
C、等腰或直角三角形
D、等腰直角三角形

查看答案和解析>>

同步练习册答案