18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®Çãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã
£¨¢ñ£©Ð´³öÖ±ÏßlµÄ²ÎÊý·½³ÌµÄ±ê×¼ÐÎʽ£¬²¢ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó$\frac{1}{|PM|}$+$\frac{1}{|PN|}$µÄÖµ£®

·ÖÎö £¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£®ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬¿ÉµÃ$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÓÉÇãб½ÇΪ$\frac{¦Ð}{3}$£¬ÇÒ¾­¹ý¶¨µãP£¨0£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=1+tsin\frac{¦Ð}{3}}\end{array}\right.$£¬»¯Îª£º$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£®
ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ª£º¦Ñ2=2$\sqrt{2}¦Ñ$¡Á$\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2x+2y£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$´úÈëÔ²CµÄ·½³ÌΪ£ºt2-t-1=0£¬
t1+t2=1£¬t1t2=-1£®
¡à$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{1}{|{t}_{1}|}$+$\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{1+4}}{1}$=$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êý$f£¨x£©=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+¡­+\frac{{{x^{2013}}}}{2013}$£¬$g£¨x£©=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}+¡­$$-\frac{{{x^{2013}}}}{2013}$£¬É躯ÊýF£¨x£©=f£¨x+1£©•g£¨x-1£©£¬ÇÒº¯ÊýF£¨x£©µÄÁãµã¾ùÔÚÇø¼ä[a£¬b]£¨a£¼b£¬a£¬b¡ÊZ£©ÄÚ£¬Ôòb-aµÄ×îСֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýf£¨x£©=x2-x-2µÄÁãµãÊÇ2»ò-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÕýÏîÊýÁÐ{an}Âú×ã$\frac{{a}_{n+1}}{{a}_{n-1}}$+$\frac{{a}_{n-1}}{{a}_{n+1}}$=$\frac{4{{a}_{n}}^{2}}{{a}_{n+1}{a}_{n-1}}$-2£¨n¡Ý2£¬n¡ÊN*£©£¬ÇÒa6=11£¬Ç°9ÏîºÍΪ81£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ{lgbn}µÄǰnÏîºÍΪlg£¨2n+1£©£¬¼Çcn=$\frac{{a}_{n}•{b}_{n}}{{2}^{n+1}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÍÏÑÓÖ¢×ÜÊDZíÏÖÔÚ¸÷ÖÖСÊÂÉÏ£¬µ«ÈÕ»ýÔÂÀÛ£¬ÌرðÓ°Ïì¸öÈË·¢Õ¹£¬Ä³Ð£µÄÒ»¸öÉç»áʵ¼ùµ÷²éС×飬ÔÚ¶Ô¸ÃУѧÉú½øÐС°ÊÇ·ñÓÐÃ÷ÏÔÍÏÑÓÖ¢¡±µÄµ÷²éÖУ¬Ëæ»ú·¢·ÅÁË110·ÝÎÊ¾í£®¶ÔÊջصÄ100·ÝÓÐЧÎÊ¾í½øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º
ÓÐÃ÷ÏÔÍÏÑÓÖ¢ÎÞÃ÷ÏÔÍÏÑÓÖ¢ºÏ¼Æ
ÄÐ352560
Ů301040
×ܼÆ6535100
£¨¢ñ£©°´Å®ÉúÊÇ·ñÓÐÃ÷ÏÔÍÏÑÓÖ¢½øÐзֲ㣬ÒѾ­´Ó40·ÝÅ®ÉúÎʾíÖгéÈ¡ÁË8·ÝÎÊ¾í£¬ÏÖ´ÓÕâ8·ÝÎʾíÖÐÔÙËæ»ú³éÈ¡3·Ý£¬²¢¼ÇÆäÖÐÎÞÃ÷ÏÔÍÏÑÓÖ¢µÄÎʾíµÄ·ÝÊýΪX£¬ÊÔÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÈôÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ýPµÄǰÌáÏÂÈÏΪÎÞÃ÷ÏÔÍÏÑÓÖ¢ÓëÐÔ±ðÓйأ¬ÄÇô¸ù¾ÝÁÙ½çÖµ±í£¬×ȷµÄPµÄֵӦΪ¶àÉÙ£¿Çë˵Ã÷ÀíÓÉ
¸½£º¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d 
P£¨K2¡Ýk0£©0.250.150.100.050.025
k01.3232.0722.7063.8415.024

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ò»ÕŰ뾶Ϊ4µÄÔ²ÐÎֽƬµÄÔ²ÐÄΪF1£¬F2ÊÇÔ²ÄÚÒ»¸ö¶¨µã£¬ÇÒF1F2=2£¬PÊÇÔ²ÉÏÒ»¸ö¶¯µã£¬°ÑֽƬÕÛµþʹµÃF2ÓëPÖØºÏ£¬È»ºóĨƽֽƬ£¬ÕÛºÛΪCD£¬ÉèCDÓë°ë¾¶PF1µÄ½»µãΪQ£¬µ±PÔÚÔ²ÉÏÔ˶¯Ê±£¬ÔòQµãµÄ¹ì¼£ÎªÇúÏßE£¬ÒÔF1F2ËùÔÚÖ±ÏßxΪÖᣬF1F2µÄÖд¹ÏßΪyÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Èçͼ£®
£¨1£©ÇóÇúÏßEµÄ·½³Ì£»
£¨2£©ÇúÏßEÓëxÖáµÄ½»µãΪA1£¬A2£¨A1ÔÚA2×ó²à£©£¬ÓëxÖá²»ÖØºÏµÄ¶¯Ö±Ïßl¹ýµãF2ÇÒÓëE½»ÓÚM¡¢NÁ½µã£¨ÆäÖÐMÔÚxÖáÉÏ·½£©£¬ÉèÖ±ÏßA1M¡¢A2N½»ÓÚµãT£¬ÇóÖ¤£º¶¯µãTºãÔÚ¶¨Ö±Ïßl¡äÉÏ£¬²¢Çól¡äµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚ${£¨{x-\frac{1}{x}-1}£©^4}$µÄÕ¹¿ªÊ½ÖУ¬³£ÊýÏîΪ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¹ýÅ×ÎïÏßx2=4yÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µãP×÷ÇÐÏߣ¬ÇÐÏßÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪ$\frac{1}{2}$£¬ÔòµãPµ½Å×ÎïÏß½¹µãFµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôº¯Êý$f£¨x£©=\frac{{63{e^x}}}{a}-\frac{b}{{32{e^x}}}$£¨x¡ÊR£©ÎªÆæº¯Êý£¬Ôòab=2016£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸