精英家教网 > 高中数学 > 题目详情
设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上任意两点,且M为A,B的中点,并已知点M的横坐标为
1
2

(1)求证:点M的纵坐标为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),n∈N*
,且n≥2,求Sn
(3)在(2)的条件下,是否存在实数λ,使λ<|
Sn-2
S2n-2
|≤λ2
-2λ对任意n≥2,n∈N*恒成立?若存在,试求出λ的取值范围;若不存在,请说明理由.
分析:(1)若点M的横坐标为
1
2
,则x1+x2=1,代入函数解析式,结合对数运算性质可得yM=
1
2
恒成立;
(2)Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
=
1
2
(n-1)+log2
1
n
1-
1
n
+log2
2
n
1-
2
n
+…+log2
n-1
n
1-
n-1
n
,结合对数的运算性质,可得后面的对数式和为0,进而可得Sn=
n-1
2

(3)Tn=|
Sn-2
S2n-2
|=|
n-5
2n-5
|=|
1
2
-
5
2(2n-5)
|
,分析数列的单调性,分析出数列的最值,可构造关于λ的不等式,解不等式可得答案.
解答:解:(1)设M(xM,yM),根据题意:x1+x2=2xM=1.
2yM=y1+y2=
1
2
+log2
x1
1-x1
+
1
2
+log2
x2
1-x2
=1+log2(
x1
1-x1
x2
1-x2
)

=1+log2
x1x2
(1-x1)(1-x2)
=1+log2
x1x2
1-(x1+x2)+x1x2
=1

yM=
1
2

(2)Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)

=
1
2
(n-1)+log2
1
n
1-
1
n
+log2
2
n
1-
2
n
+…+log2
n-1
n
1-
n-1
n

=
1
2
(n-1)+log2(
1
n-1
2
n-2
3
n-3
…•
n-1
n-(n-1)
)

Sn=
n-1
2

(3)Tn=|
Sn-2
S2n-2
|=|
n-5
2n-5
|=|
1
2
-
5
2(2n-5)
|

可知T2=3,T3=2,T4=
1
3
T5=0,n≥5,Tn为单调增数列且Tn
1
2

(|
Sn-2
S2n-2
|)max=3,(|
Sn-2
S2n-2
|)min=0

由已知得:
λ<0
λ2-2λ≥3
λ<0
λ≥3或λ≤-1
⇒λ≤-1
点评:本题考查的知识点是数列与函数的综合,对数的运算性质,数列的单调性,恒成立问题,中点公式,综合知识点多,运算强度大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.

查看答案和解析>>

同步练习册答案