精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$cos(ωx+$\frac{π}{6}$).
(1)求f(0)的值;
(2)若f(x)的最小正周期为π,且f(α)=0(α∈(0,$\frac{π}{2}$),求cosα的值.

分析 (1)由三角函数公式化简可得f(x)=cosωx,代值计算可得f(0)的值;
(2)由周期公式可得ω=2,可得cosα的方程,结合α的范围解方程可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$cos(ωx+$\frac{π}{6}$)
=sin$\frac{π}{6}$sin(ωx+$\frac{π}{6}$)+cos$\frac{π}{6}$cos(ωx+$\frac{π}{6}$)
=cos(ωx+$\frac{π}{6}$-$\frac{π}{6}$)=cosωx,
∴f(0)的值为cos0=1;
(2)由(1)可得$\frac{2π}{ω}$=π,解得ω=2,
∴f(α)=cos2α=2cos2α-1=0,
结合α∈(0,$\frac{π}{2}$)可解得cosα=$\frac{\sqrt{2}}{2}$

点评 本题考查三角函数的周期性和三角函数公式的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(α)=$\frac{sin(π-α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{cos(-π-α)•cos(-α+\frac{3π}{2})}$
(1)求f(-$\frac{31π}{3}$)的值;
(2)若f(α)=$\frac{3}{5}$,求sinα,tanα的值.
(3)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax3-bx,a,b∈R,若f(-2)=-1,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\vec a$=(1,2),$\vec b$=(-4,2),则$|{\overrightarrow a+\overrightarrow b}|$等于(  )
A.25B.5C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.单位圆中面积为2的扇形所对的圆心角的弧度数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在区间[0,a](a>0)上的最小值
(2)若对任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数a1,a2,a3,a4各不相等,若集合{x|x=ai+aj,1≤i≤j}={1,2,3,5,6,7},则a12+a22+a32+a42=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log${\;}_{\frac{1}{2}}$x.
(1)解不等式:f(x2-x-2)+1>-log2(x-1);
(2)设函数g(x)=[$\frac{1}{2}$f(x)]2-f($\sqrt{x}$)+5,求x∈[2,4]时,函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${log_5}(2x+1)={log_5}({x^2}-2),则x$=3.

查看答案和解析>>

同步练习册答案