精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在区间[0,a](a>0)上的最小值
(2)若对任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

分析 (1)由条件利用二次函数的性质,求得f(x)在区间[0,a](a>0)上的最小值.
(2)在[1,4]上,求得f(x)∈[-1,3],再根据g(x)的值域包含[-1,3],求得m的范围.

解答 解:(1)函数f(x)=x2-4x+3=(x-2)2-1 在区间[0,a]上,
故当a≤2 时,$f{(x)_{min}}=f(a)={a^2}-4a+3$;
当a>2时,f(x)min=f(2)=-1;∴$f{(x)_{min}}=\left\{{\begin{array}{l}{{a^2}-4a+3,a∈({0,2}]}\\{-1,a∈({2,+∞})}\end{array}}\right.$.
(2)由已知,在[1,4]上,m≠0,f(x)∈[-1,3],
当m>0时,g(x)∈[5-m,2m+5],$\left\{{\begin{array}{l}{5-m≤-1}\\{2m+5≥3}\end{array}}\right.⇒m≥6$;
当m<0时,g(x)∈[2m+5,5-m],由$\left\{{\begin{array}{l}{2m+5≤-1}\\{5-m≥3}\end{array}}\right.⇒m≤-3$,
∴m∈(-∞,-3]∪[6,+∞).

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,则(a0+a2+a4)(a1+a3+a5)的值等于(  )
A.16B.-32C.256D.-256

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是奇函数,且当x>0时,$f(x)=-\sqrt{x+1}$,则当x∈R时,f(x)的解析式为f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.f(x)是偶函数且在[0,+∞)上是减函数,且f(log2x)>f(1),则x的取值范围是(  )
A.($\frac{1}{2}$,1)B.(0,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2}$,2)D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$cos(ωx+$\frac{π}{6}$).
(1)求f(0)的值;
(2)若f(x)的最小正周期为π,且f(α)=0(α∈(0,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设A={x∈R|$\frac{1}{x}$≥1},B={x∈R|ln(1-x)≤0},则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.既不充分也不必要条件
C.充要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数g(x)是函数y=logax(a>0,且a≠1)的反函数,且g(1)=2,则g(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,则复数($\frac{1+i}{1-i}$)5的值为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知第四象限角α的终边与单位圆交于点$P(\frac{4}{5},m)$
(1)写出sinα,cosα,tanα的值;
(2)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.

查看答案和解析>>

同步练习册答案