精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)是奇函数,且当x>0时,$f(x)=-\sqrt{x+1}$,则当x∈R时,f(x)的解析式为f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.

分析 要求函数的解析式,已知已有x>0时的函数解析式,只要根据题意求出x<0及x=0时的即可,根据奇函数的性质容易得f(0)=0,而x<0时,由-x>0及f(-x)=-f(x)可求.

解答 解:设x<0,则-x>0
∵当x>0时,$f(x)=-\sqrt{x+1}$,∴f(-x)=-$\sqrt{-x+1}$
由函数f(x)为奇函数可得f(-x)=-f(x)
∴f(x)=-f(-x)=$\sqrt{-x+1}$,x<0
∵f(0)=0
∴f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.
故答案为:f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.

点评 本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点,
(1)若点A的横坐标是$\frac{3}{5}$,点B的纵坐标是$\frac{12}{13}$,求sin(α+β)的值;
(2)若|AB|=$\frac{3}{2}$,求cos(β-α)的值;
(3)已知点C(-1,3 ),求函数f(α)=$\overrightarrow{OA}•\overrightarrow{OC}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x+2)是定义在(-∞,+∞)上的奇函数.当x∈(-∞,2)时,f(x)=x-x4,则当x∈(2,+∞)时,f(x)=(x-4)4-(4-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9有2条公切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax3-bx,a,b∈R,若f(-2)=-1,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设A={(x,y)|y=1+$\sqrt{4-{x}^{2}}$},B={(x,y)|y=k(x-2)+4},若A∩B中含有两个元素,则实数k的取值范围是($\frac{5}{12}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\vec a$=(1,2),$\vec b$=(-4,2),则$|{\overrightarrow a+\overrightarrow b}|$等于(  )
A.25B.5C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在区间[0,a](a>0)上的最小值
(2)若对任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,向量$\overrightarrow{OP}$=(n,$\frac{{S}_{n}}{n}$),$\overrightarrow{O{P}_{1}}$=(m,$\frac{{S}_{m}}{m}$),$\overrightarrow{O{P}_{2}}$=(k,$\frac{{S}_{k}}{k}$),且$\overrightarrow{OP}$=λ$\overrightarrow{O{P}_{1}}$+μ$\overrightarrow{O{P}_{2}}$,已知m,n,k∈N*且互不相等,则用m,n,k表示μ=(  )
A.μ=$\frac{k-n}{k-m}$B.μ=$\frac{n-m}{n-k}$C.μ=$\frac{n-m}{k-m}$D.μ=$\frac{k-m}{k-n}$

查看答案和解析>>

同步练习册答案