分析 要求函数的解析式,已知已有x>0时的函数解析式,只要根据题意求出x<0及x=0时的即可,根据奇函数的性质容易得f(0)=0,而x<0时,由-x>0及f(-x)=-f(x)可求.
解答 解:设x<0,则-x>0
∵当x>0时,$f(x)=-\sqrt{x+1}$,∴f(-x)=-$\sqrt{-x+1}$
由函数f(x)为奇函数可得f(-x)=-f(x)
∴f(x)=-f(-x)=$\sqrt{-x+1}$,x<0
∵f(0)=0
∴f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.
故答案为:f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.
点评 本题主要考查了利用函数的奇偶性求解函数的解析式,解题中要注意函数的定义域是R,不用漏掉对x=0时的考虑.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 5 | C. | 7 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | μ=$\frac{k-n}{k-m}$ | B. | μ=$\frac{n-m}{n-k}$ | C. | μ=$\frac{n-m}{k-m}$ | D. | μ=$\frac{k-m}{k-n}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com