精英家教网 > 高中数学 > 题目详情
17.如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点,
(1)若点A的横坐标是$\frac{3}{5}$,点B的纵坐标是$\frac{12}{13}$,求sin(α+β)的值;
(2)若|AB|=$\frac{3}{2}$,求cos(β-α)的值;
(3)已知点C(-1,3 ),求函数f(α)=$\overrightarrow{OA}•\overrightarrow{OC}$的值域.

分析 (1)通过题意求出A、B点坐标,进而利用两角和的正弦公式计算即可;
(2)通过|AB|=$\frac{3}{2}$,利用$|\overrightarrow{OB}-\overrightarrow{OA}{|}^{2}$=$\frac{9}{4}$计算即得结论;
(3)通过设$\overrightarrow{OA}=(cosα,sinα)$,可知f(α)=3sinα-cosα,利用α为锐角即得结论.

解答 解:(1)由题意可得A的坐标为$(\frac{3}{5},\frac{4}{5})$,B点坐标$(-\frac{5}{13},\frac{12}{13})$,
根据三角函数定义,$sinα=\frac{3}{5},cosα=\frac{4}{5},sinβ=\frac{12}{13},cosβ=-\frac{5}{13}$,
∴$sin(α+β)=sinαcosβ+cosαsinβ=\frac{3}{5}×(-\frac{5}{13})+\frac{4}{5}×\frac{12}{13}=\frac{33}{65}$;
(2)∵|AB|=$\frac{3}{2}$,
∴$|\overrightarrow{AB}{|^2}=|\overrightarrow{OB}-\overrightarrow{OA}{|^2}={\overrightarrow{OB}^2}+{\overrightarrow{OA}^2}-2\overrightarrow{OA}•\overrightarrow{OB}=1+1-2cos<\overrightarrow{OA},\overrightarrow{OB}>=\frac{9}{4}$,
∴$cos<\overrightarrow{OA},\overrightarrow{OB}>=-\frac{1}{8}$,即$cos(β-α)=-\frac{1}{8}$;
(3)由题意可知,$\overrightarrow{OA}=(cosα,sinα)$,$\overrightarrow{OC}$=(-1,3 ),
∴f(α)=$\overrightarrow{OA}•\overrightarrow{OC}$=3sinα-cosα,
又∵α为锐角,
∴-1<f(α)<3.

点评 此题考查了两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=lgcosx+$\sqrt{25-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司经过市场调查发现,某种商品在最初上市的几个月内销量很好,几乎能将所生产的产品销售出去,为了最求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后将商品的生产量翻两番,则平均每月生产量的增长率,约为14.87%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过平面外一点,可以作这个平面的平行线的条数是(  )
A.1条B.2条C.超过2条但有限D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,准备在扇形空地AOB上修建一个山水景观OPQ,己知∠AOB=$\frac{2}{3}$π,OA=lkm,点P在扇形弧上,PQ∥OA交OB于点Q,记∠POA=x.
(Ⅰ)当Q是OB中点时,求PQ的长;
(Ⅱ)求使山水景观OPQ的面积S最大时x的值; 
(Ⅲ)为了方便路人休闲行走,要在扇形空地上铺设一条从入口A到出口B的观光道路,道路由弧$\widehat{AP}$,线段PQ以及线段QB组成,怎样设计才能使得观光道路最长?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合M=$\{x|y={x^{\frac{1}{2}}}\},N=\{x|-1>2-3x≤5\}$,U=R,则图中阴影部分表示的集合是[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow{b}$=(sin20°,cos20°),则$\overrightarrow{a}$•$\overrightarrow{b}$等于(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,则(a0+a2+a4)(a1+a3+a5)的值等于(  )
A.16B.-32C.256D.-256

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是奇函数,且当x>0时,$f(x)=-\sqrt{x+1}$,则当x∈R时,f(x)的解析式为f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.

查看答案和解析>>

同步练习册答案