精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-1的值域为{0,1},这样的函数有9个.

分析 由函数解析式结合函数的值域求得函数的定义域得答案.

解答 解:由x2-1=0,得x=±1,由x2-1=1,得x=$±\sqrt{2}$.
∴满足函数f(x)=x2-1的值域为{0,1}的函数为:
f(x)=x2-1,x∈{-1,$-\sqrt{2}$};
f(x)=x2-1,x∈{-1,$\sqrt{2}$};
f(x)=x2-1,x∈{1,$-\sqrt{2}$};
f(x)=x2-1,x∈{1,$\sqrt{2}$};
f(x)=x2-1,x∈{±1,$-\sqrt{2}$};
f(x)=x2-1,x∈{±1,$\sqrt{2}$};
f(x)=x2-1,x∈{-1,$±\sqrt{2}$};
f(x)=x2-1,x∈{1,$±\sqrt{2}$};
f(x)=x2-1,x∈{±1,$±\sqrt{2}$}共9个.
故答案为:9.

点评 本题考查函数的定义域及其求法,考查函数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.指数函数f(x)=(2-a)x是单调函数,则a的取值范围是(  )
A.(1,2)∪(-∞,1)B.(1,2)C.(-∞,1)D.(1,2)∪(-∞,1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题p:?x∈R,x2>lnx,则¬p为(  )
A.?x0∈R,x02>lnx0B.?x∈R,x2≤lnxC.?x0∈R,x02≤lnx0D.?x∈R,x2<lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个…依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为(  )
A.4个B.8个C.16个D.32个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某居民小区拟将一块三角形空地改造成绿地.经测量,这块三角形空地的两边长分别为32m和68m,它们的夹角是30°.已知改造费用为50元/m2,那么,这块三角形空地的改造费用为(  )
A.$27200\sqrt{3}$元B.$54400\sqrt{3}$元C.27200元D.54400元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A,上下两个顶点分别为B,C,若左焦点是△ABC的垂心,则椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2+bx+c的两个零点为1,3.
(1)求b,c;
(2)当x∈[1,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+bx2+cx-1当x=-2时有极值,且在x=-1处的切线的斜率为-3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x+1,x∈{1,2,3}的值域是(  )
A.RB.[1,3]C.{1,2,3}D.{3,5,7}

查看答案和解析>>

同步练习册答案