精英家教网 > 高中数学 > 题目详情
3.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{4}$,β∈($\frac{π}{2}$,π),求sin(β+α)

分析 利用两角和差的正弦公式进行求解即可.

解答 解:∵sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{4}$,β∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-(\frac{2}{3})^{2}}$=-$\frac{\sqrt{5}}{3}$,sinβ=$\sqrt{1-(-\frac{3}{4})^{2}}$=$\frac{\sqrt{7}}{4}$,
则sin(β+α)=sinβcosα+cosβsinα=$\frac{\sqrt{7}}{4}$×(-$\frac{\sqrt{5}}{3}$)+(-$\frac{3}{4}$)×$\frac{2}{3}$=-$\frac{\sqrt{35}}{12}$-$\frac{6}{12}$=$\frac{-6-\sqrt{35}}{12}$.

点评 本题主要考查三角函数值的计算,利用两角和差的正弦公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且△x=1时,函数增量△y和平均变化率$\frac{△y}{△x}$;
(2)求当x1=4,且△x=0.1时,函数增量△y和平均变化率$\frac{△y}{△x}$;
(3)若设x2=x1+△x,分析(1)(2)问中的平均变化率的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆心在第四象限,半径为$\sqrt{10}$的圆C与直线y=3x相切于坐标原点O,则圆C的方程是(  )
A.(x-2)2+(y+1)2=10B.(x-3)2+(y+1)2=10C.(x-1)2+(y+3)2=10D.(x+1)2+(y-3)2=10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:曲线C1:$\frac{{x}^{2}}{{k}^{2}}$+$\frac{{y}^{2}}{2k+8}$=1表示焦点在x轴上的椭圆,命题q:(k-1)x2+(k-5)y2=1表示双曲线,若p或q为真,p且q为假,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\frac{1}{x}$,则f(f′($\frac{1}{5}$))=(  )
A.-25B.-$\frac{1}{25}$C.$\frac{1}{25}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.画出函数y=|($\frac{1}{2}$)|x|-$\frac{1}{2}$|的图象,并利用图象回答:k为何值时,方程|($\frac{1}{2}$)|x|-$\frac{1}{2}$|=k无解?有一解?有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax+(k+1)a-x(a>0且a≠1)是定义在R上的奇函数.
(1)求k的值;
(2)若${\;}{f(1)=\frac{3}{2}}$,求函数y=g(x)=a2x+a-2x-4mf(x)(m∈R)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+k+1(a>0).
(1)若f(-1)=0,且对任意实数x均有f(x)≥0,求f(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$\overrightarrow a,\overrightarrow b,\overrightarrow c$均为单位向量,$\overrightarrow a•\overrightarrow b=-\frac{1}{2},\overrightarrow c=x\overrightarrow a+y\overrightarrow b,({x,y∈R})$,则x+y的最大值是2.

查看答案和解析>>

同步练习册答案