精英家教网 > 高中数学 > 题目详情
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:
(2)求二面角的余弦值.
(1)证明见解析;(2)

试题分析:(1)先利用平面几何知识与线面垂直的性质证线线垂直,由线线垂直得到线面垂直,再由线面垂直得到线线垂直;(2)作出二面角的平面角,证明符合二面角的定义,再在三角形中求二面角的平面角,从而求出所求的二面角.
试题解析:(1)如图,连接

知,点的中点,
又∵为圆的直径,

知,
为等边三角形,从而
∵点在圆所在平面上的正投影为点
平面,又平面

得,平面
平面

(2)方法1:(综合法)如图,过点,垂足为,连接

由(1)知平面
又∵平面

又∵
平面
又∵平面

为二面角的平面角.
由(Ⅰ)可知
,则
∴在中,
,即二面角的余弦值为.              
方法2:(坐标法)以为原点,的方向分别为轴、轴和轴的正向,建立如图所示的空间直角坐标系,

,由得,


平面,知平面的一个法向量为
设平面的一个法向量为,则
,即,令,则

设二面角的平面角的大小为

∴二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.

(1)当E点是AB中点时,求证:直线ME‖平面ADD1 A1
(2)若二面角AD1EC的余弦值为.求线段AE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l,m,n是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是(     )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同直线,是两个不同的平面,下列命题正确的是(     )
A.B.,则
C.,则D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列四个命题,其中真命题的序号是(    )
① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直;
④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

查看答案和解析>>

同步练习册答案