精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.
(1)证明过程详见解析;(2).

试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,由第一问知两两互相垂直,所以建立空间直角坐标系,得出点,以及坐标,利用已知先求出平面与平面的法向量,再利用夹角公式求出夹角的余弦值.
试题解析:(Ⅰ)取中点为,连结
因为,所以
,所以平面
因为平面,所以.        3分
由已知,,又,所以
因为,所以平面
平面,所以平面⊥平面.      5分
(Ⅱ)由(Ⅰ)知,两两互相垂直.

为坐标原点,的方向为轴的方向,为单位长,建立如图所示的空间直角坐标系
由题设知

是平面的法向量,则
,可取.      9分
同理可取平面的法向量
.         11分
所以二面角的余弦值为.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

棱长为2的正方体中,E为的中点.

(1)求证:
(2)求异面直线AE与所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.

(Ⅰ)求证:底面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求二面角的正切值;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使异面直线所成的角为,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知、b为两条直线,为两个平面,下列四个命题:
∥b,b∥;       ②
,     ④
其中不正确的有(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在(  )
A.直线AB上B.直线BC上C.直线AC上D.△ABC内部

查看答案和解析>>

同步练习册答案