精英家教网 > 高中数学 > 题目详情
如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;
(1)详见解析;(2).

试题分析:(1)先证平面,进而得到,再由四边形为菱形得到,最后结合直线与平面垂直的判定定理证明平面;(2)先在平面内作,垂足为点,连接,通过证明平面,从而得到,进而在直角三角形中求该角的余弦值即可.
试题解析:(1)证明:在
满足,所以,即
又因为四边形为矩形,所以
,所以
又因为,所以
又因为四边形为菱形,所以
,所以
(2)过,连接由第(1)问已证

平面,又,所以
又因为,所以
所以,就是二面角的平面角在直角中,

在直角中,,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.的中点,

(1)求证:
(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是圆的直径,垂直圆所在的平面,是圆上任一点,是线段的中点,是线段上的一点.

求证:(Ⅰ)若为线段中点,则∥平面
(Ⅱ)无论何处,都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.

(1)当E点是AB中点时,求证:直线ME‖平面ADD1 A1
(2)若二面角AD1EC的余弦值为.求线段AE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l,m,n是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是(     )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线平面,直线平面,则直线的位置关系是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

查看答案和解析>>

同步练习册答案