精英家教网 > 高中数学 > 题目详情
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(1)见解析;(2)

试题分析:(1)主要考虑证明AB垂直于平面PCB内的两条相交直线.根据PC⊥平面ABC,AB平面ABC,得到PC⊥AB.根据CD⊥平面PAB,AB平面PAB,得到OC⊥AB.因此AB平面PCB.
(2)有两种思路,
一是“几何法”,通过“一作,二证,三计算”确定异面直线PA与BC所成的角为.
二是“向量法”,以B为原点,建立如图所示的坐标系.通过确定向量的坐标
利用
得到异面直线AP与BC所成的角为 
试题解析:解法一:(1)∵PC⊥平面ABC,AB平面ABC,∴PC⊥AB.      2分
∵CD⊥平面PAB,AB平面PAB,∴OC⊥AB.   3分
又PCCD=C,∴AB平面PCB.     4分

(2)过点A作AF//BC,且AF=BC,连接PF,CF.
则∠PAF为异面直线PA与BC所成的角.      5分
由(1)可得AB⊥BC,∴CF⊥AF.
由三垂线定理,得PF⊥AF。
则AF=CF=
在Rt△PFA中,          
∴异面直线PA与BC所成的角为.      12分
解法二:(1)同解法一.
(2)由(1)AB⊥平面PCB,∵PC=AC=2,
又∵AB=BC,可求得BC=
以B为原点,建立如图所示的坐标系.
则A(0,,0),B(0,0,0),C(,0,0),P(,0,2).
     8分


∴异面直线AP与BC所成的角为     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知是圆的直径,垂直圆所在的平面,是圆上任一点,是线段的中点,是线段上的一点.

求证:(Ⅰ)若为线段中点,则∥平面
(Ⅱ)无论何处,都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求证:AC⊥BC1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
正确命题的个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,下列推论中错误的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,是三个不同的平面,给出下列命题:
①若,则
②若,则
③若,则
④若,则
上面命题中,真命题的序号是      (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不重合的平面,给出下列命题:
①若外一条直线内一条直线平行,则
②若内两条相交直线分别平行于内的两条直线 ,则
③设,若内有一条直线垂直于,则
④若直线与平面内的无数条直线垂直,则.
上面的命题中,真命题的序号是 (    )
A.①③B.②④C.①②D.③④

查看答案和解析>>

同步练习册答案