精英家教网 > 高中数学 > 题目详情
如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求二面角的正切值;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使异面直线所成的角为,若存在,确定点的位置,若不存在,说明理由.
(1);(2);(3)不存在.

试题分析:(1)根据四面体的体积及底面积可求出.为中点,所以,这样可得为二面角的平面角.在中即可求得其正切值.
(2)由于面,所以只需在面ABCD内过点D作交线BG的垂线,即可得PD在面PBG内的射影,从而得PD与面PBG所成的角.(3)存在性的问题,一般都通过建系来求.dsgjghmk两两垂直,故可分别以轴建立坐标系.
假设存在且设
然后用向量的夹角公式求y,如果能求出满足条件的y则存在,若不能求出满足条件的y,则不存在.
试题解析:(1)由四面体的体积为.∴
设二面角的大小为为中点,
同理
                    3分
(2)由
为等腰三角形,GE为的角平分线,作交BG的延长线于K,

由平面几何知识可知: ,.设直线与平面所成角为
                      8分
(法二:建系)
(3)两两垂直,分别以轴建立坐标系
假设存在且设
又直线所成的角为
化简得:
不满足
∴这样的点不存在                        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b、c为三条不重合的直线,下面结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为(  )
A.0个 B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m、n和平面α,在下列给定的四个结论中,m∥n的一个必要但不充分条件是(   )
A.m∥α,n∥αB.m⊥α,n⊥α
C.m∥α,n?αD.m、n与α所成的角相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不重合的平面,给出下列命题:
①若外一条直线内一条直线平行,则
②若内两条相交直线分别平行于内的两条直线 ,则
③设,若内有一条直线垂直于,则
④若直线与平面内的无数条直线垂直,则.
上面的命题中,真命题的序号是 (    )
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题不正确的是( )
A.若如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直
B.若一个平面内的任一条直线都平行于另一个平面,则两平面平行
C.若一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行
D.若两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过直线外两点作与直线平行的平面,可以作( )
A.1个B.1个或无数个
C.0个或无数个D.0个、1个或无数个

查看答案和解析>>

同步练习册答案