精英家教网 > 高中数学 > 题目详情
过直线外两点作与直线平行的平面,可以作( )
A.1个B.1个或无数个
C.0个或无数个D.0个、1个或无数个
D

试题分析:当两点所在的直线与直线平行时,可以作无数个平面与平行;
当两点所确定直线与直线异面时,可以仅作一个平面与直线平行;
当两点所在的直线与直线相交时,则不能作与直线平行的平面.
故可以作无数个平面或0个或1个平面与与直线平行;
故选
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求二面角的正切值;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使异面直线所成的角为,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,点分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD^底面ABCD,PD=DC,点E是PC的中点,作EF^PB交PB于点F,

(1)求证:PA//平面EDB;
(2)求证:PB^平面EFD;
(3)求二面角C-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同直线,是两个不同平面,则下列命题错误的是(      )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a、b是不同的直线,是不同的平面,给出下列命题:
①若,a,则a∥ ;   ②若a、b与所成角相等,则a∥b;
③若,则;   ④若a⊥, a⊥,则
其中正确的命题的序号是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,将△ADE绕DE旋转得到△A′DE(A′ 平面ABC),则下列叙述错误的是(   )

A. 平面A′FG⊥平面ABC
B.  BC∥平面A′DE
C. 三棱锥A′-DEF的体积最大值为
D. 直线DF与直线A′E不可能共面

查看答案和解析>>

同步练习册答案