精英家教网 > 高中数学 > 题目详情
如图,直三棱柱中,,点分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)求异面直线所成角的大小.
(Ⅰ)证明见试题解析;(Ⅱ).

试题分析:(Ⅰ)证线面平行,一般根据线面平行的判定定理,在平面内找到一条与平行的直线即可.由于四边形是正方形,点也是的中点,故的中位线,,得证.(Ⅱ)要求异面直线所成的角的大小,一般是先作出这两条异面直线所成的角,由(Ⅰ) ,故异面直线所成角即或其补角,下面我们只要通过解,求出即可,要注意的是异面直线所成的角不大于
试题解析:(Ⅰ)证明:连结,由已知条件,四边形是正方形,点也是的中点,故有                  4分
  ,
∥平面            8分
(Ⅱ)解:由(1)可知 ,故异面直线所成角即或其补角    10分


 ,          12分

,即异面直线所成角大小为       14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知多面体中,平面平面的中点.

(1)求证:
(2)求直线与平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平行四边形中,,以为折线,把折起,使平面平面,连结.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b、c为三条不重合的直线,下面结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为(  )
A.0个 B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题不正确的是( )
A.若如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直
B.若一个平面内的任一条直线都平行于另一个平面,则两平面平行
C.若一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行
D.若两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线  (  )
A.相交B.平行C.异面D.共面或异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过直线外两点作与直线平行的平面,可以作( )
A.1个B.1个或无数个
C.0个或无数个D.0个、1个或无数个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中真命题的个数为(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四边形中,,将沿折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是(   )
A.平面平面B.平面平面
C.平面平面D.平面平面

查看答案和解析>>

同步练习册答案