精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)={cos^2}x+\sqrt{3}sinxcosx+a$的图象过点$(\frac{π}{6},1)$.
(Ⅰ)求实数a的值及函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在$[0,\frac{π}{2}]$上的最小值.

分析 (Ⅰ)由三角函数公式化简可得f(x)=$sin(2x+\frac{π}{6})+\frac{1}{2}+a$,由周期公式可得周期,由图象过点$(\frac{π}{6},1)$可得a值;
(Ⅱ)由$0≤x≤\frac{π}{2}$和解析式结合三角函数的最值可得.

解答 解:(Ⅰ)由三角函数公式化简可得$f(x)={cos^2}x+\sqrt{3}sinxcosx+a$
=$\frac{1+cos2x}{2}+\frac{{\sqrt{3}sin2x}}{2}+a$=$sin(2x+\frac{π}{6})+\frac{1}{2}+a$.
∵函数f(x)的图象过点$(\frac{π}{6},1)$,
∴$f(\frac{π}{6})=sin(2×\frac{π}{6}+\frac{π}{6})+\frac{1}{2}+a=1$.解得$a=-\frac{1}{2}$.
∴函数f(x)的最小正周期为π;
(Ⅱ)∵$0≤x≤\frac{π}{2}$,∴$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{7π}{6}$.
∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$.
∴当$2x+\frac{π}{6}=\frac{7π}{6}$即$x=\frac{π}{2}$时,函数f(x)取最小值$-\frac{1}{2}$

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知幂函数y=x${\;}^{\frac{a-1}{3}}$图象关于y轴对称,定义域为非零实数,且在(0,+∞)上为单调递减函数,则绝对值最小的整数a值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则a34=(  )
A.$\frac{34}{103}$B.100C.$\frac{1}{100}$D.$\frac{1}{104}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,曲线C的方程为${ρ^2}=\frac{3}{{1+2{{cos}^2}θ}}$,点$R(2\sqrt{2},\frac{π}{4})$,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$),其中向量$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow{b}$=(sinx,-3cosx),$\overrightarrow{c}$=(-cosx,sinx).(a∈R).
(1)求函数f(x)的最大值和最小正周期;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,PA⊥平面ABC,PA=$\sqrt{2}$,AB=1,BC=$\sqrt{3}$,AC=2,D是PC的中点.
(1)求二面角B-PA-C的大小;
(2)求直线BD与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线1的参数方程是$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$(t为参数),曲线C的极坐标方程是ρ=$\frac{6cosθ}{1-cos2θ}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》中将底面的长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为蟞臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD=BC,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,蟞臑有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面关于命题“p:所有抛物线的离心率为1”的说法正确的是(  )
A.p是特称命题,¬p:存在一条抛物线的离心率不为1
B.p是特称命题,¬p:存在一条抛物线的离心率为1
C.p是全称命题,¬p:存在一条抛物线的离心率不为1
D.p是全称命题,¬p:存在一条抛物线的离心率为1

查看答案和解析>>

同步练习册答案