精英家教网 > 高中数学 > 题目详情
(2012•东莞二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,若E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDC⊥平面PAD.
(3)求四棱锥P-ABCD的体积VP-ABCD
分析:(1)连接AC,利用三角形中位线的性质,证明EF∥PA,利用线面平行的判定,可得EF∥平面PAD;
(2)面面垂直的性质,证明CD⊥平面PAD,进而可证平面PAD⊥平面PDC;
(3)先计算P-ADC的体积,再计算求四棱锥P-ABCD的体积VP-ABCD
解答:(1)证明:连接AC,则F是AC的中点,在△CPA中,EF∥PA,…(2分)
∵PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD                              …(4分)
(2)证明:因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,…(7分)
又CD?平面PDC,∴平面PAD⊥平面PDC.…(8分)
(3)解:∵PA=PD=
2
2
AD=
2
,∴PA2+PD2=AD2
PA⊥PD,S△PAD=
1
2
(
2
)2=1
,…(10分)
又由(2)可知CD⊥平面PAD,CD=2,…(11分)
VP-ADC=VC-PAD=
1
3
×1×2=
2
3
,…(13分)
VP-ABCD=2VP-ADC=2×
2
3
=
4
3
.…(14分)
点评:本题考查线面平行,考查面面垂直,考查棱锥体积的计算,解题的关键是掌握线面平行,面面垂直的判定,正确运用棱锥的体积公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东莞二模)附加题:设函数f(x)=
1
4
x2+
1
2
x-
3
4
,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)甲、乙两名运动员的5次测试成绩如图所示,设s1,s2分别表示甲、乙两名运动员测试成绩的标准差,
.
x1
.
x2
分别表示甲、乙两名运动员测试成绩的平均数,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)对于函数
①f(x)=|x+2|,
②f(x)=(x-2)2
③f(x)=cos(x-2),
判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;能使命题甲、乙均为真的所有函数的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设D是不等式组
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设复数z1=1+i,z2=2+bi,若z1•z2为实数,则b=(  )

查看答案和解析>>

同步练习册答案