精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方形与直角梯形所在平面互相垂直,

(I)求证: 平面

(II)求证: 平面

(III)求四面体的体积.

【答案】(1)见解析(2)见解析(3)

【解析】试题分析:(1)欲证AC⊥平面BDE,只需证明AC垂直平面BDE中的两条相交直线即可,因为AC与BD是正方形ABCD的对角线,所以ACBD,再正DE垂直AC所在的平面,得到AC垂直DE,而BD,DE是平面BDE中的两条相交直线,问题得证.

(2)欲证AC∥平面BEF,只需证明AC平行平面BEF中的一条直线即可,利用中位线的性质证明OG平行DE且等于DE的一半,根据已知AF平行DE且等于DE的一半,所以OG与AF平行且相等,就可得到AC平行FG,而FG为平面BEF中的一条直线,问题得证.

(3)四面体BDEF可以看做以DEF为底面,以点B为顶点的三棱锥,底面三角形DEF的底边DE=2,高DA=2,三棱锥的高为AB,长度等于2,再代入三棱锥的体积公式即可

)因为平面平面

,所以平面

因为平面,所以

因为是正方形,所以 ,所以平面

)设,取中点,连接,如下图:

所以平行且等于

因为

所以平行且等于,从而四边形是平行四边形,

,因为平面 平面,所以平面

平面

因此四面体的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面为菱形,平面,点在棱上.

(Ⅰ)求证:直线平面

(Ⅱ)若平面,求证:

(Ⅲ)是否存在点,使得四面体的体积等于四面体的体积的?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是菱形所在平面外一点, 是等边三角形, 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(

A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 为棱上一动点, 为底面上一动点, 的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是

A. 棱柱 B. 棱台 C. 棱锥 D. 球的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥的三组相对棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为,其中,则该三棱锥体积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出09之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(  )

A. 0.35 B. 0.25

C. 0,20 D. 0.15

查看答案和解析>>

同步练习册答案