精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足a1=1,an=3an-1+3n-1(n≥2),则an=n•3n-1

分析 由an=3an-1+3n-1(n≥2),变形为$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}$=$\frac{1}{3}$,利用等差数列的通项公式即可得出.

解答 解:∵an=3an-1+3n-1(n≥2),
∴$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}$=$\frac{1}{3}$,
∴数列$\{\frac{{a}_{n}}{{3}^{n}}\}$是等差数列,首项与公差都为$\frac{1}{3}$.
∴$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{3}+\frac{1}{3}(n-1)$=$\frac{n}{3}$,
∴an=n•3n-1
故答案为:n•3n-1

点评 本题考查了等差数列的通项公式,考查了变形能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数g(x)=2x-a(x≤2)的值域为(  )
A.(-∞,4-a]B.(0,4-a]C.[4-a,+∞)D.(-a,4-a]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=$\left\{\begin{array}{l}{\frac{2b-1}{x}+b+3,x>1}\\{-{x}^{2}+(2-b)x,x≤1}\end{array}\right.$在x∈R内满足:对于任意的实数x1≠x2,都有(x1-x2)(f(x1)-f(x2))>0成立,则实数b的取值范围为[-$\frac{1}{4}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若曲线$y=\frac{lnx}{x}$在x=x0处的切线斜率为0,则实数x0的值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆的中心在原点,焦点在x轴上,直线x-y-1=0经过椭圆的一个焦点和一个顶点,
(1)求椭圆的标准方程;
(2)直线与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过点P(0,3),并且与坐标轴围成的三角形的面积是6的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.四棱柱ABCD-A1B1C1D1的三视图如图所示,E、F分别为A1B1、CC1的中点.
(1)求证:EF∥平面A1BC;
(2)求D1到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合M={y|y=x2-1,x∈R},集合N={x|y=$\sqrt{9-{x}^{2}}$,x∈R},则M∩N={x|-1≤x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知幂函数f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.

查看答案和解析>>

同步练习册答案