精英家教网 > 高中数学 > 题目详情

甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一个抽到选择题的概率是多少?

解析试题分析:由题意知本题可以看做等可能事件的概率,试验发生包含的事件数10×9,(1)满足条件的事件是甲抽到选择题,乙抽到判断题,共有24种结果,即可求出概率;(2)满足条件的事件是甲、乙二人中至少有一人抽到选择题,的对立事件为甲、乙二人依次都抽到判断题,此概率为,根据对立事件的概率公式即可得到甲、乙二人中至少有一人抽到选择题的概率为1-,即可求出结果.
解:(1)甲从选择题中抽到一题的可能结果有6个,乙从判断题中抽到一题的可能结果有4个,又甲、乙依次抽一题的结果共有10×9个,所以甲抽到选择题,乙抽到判断题的概率是:
(2)甲、乙二人依次都抽到判断题的概率为,故甲、乙二人中至少有一人抽到选择题的概率为1-.                          5′
或: ++++,所求概率为
考点:古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

 
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
 
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分9分)一个袋子中有3个红球和2个黄球,5个球除颜色外完全相同,甲、乙两人先后不放回地从中各取1个球.规定:若两人取得的球的颜色相同则甲获胜,否则乙获胜.
(1) 求两个人都取到黄球的概率;
(2) 计算甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球次均未命中的概率为
(1)求乙投球的命中率
(2)若甲投球次,乙投球次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:

 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:

品牌

 
 

 
首次出现故障时间x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轿车数量(辆)
2
3
45
5
45
每辆利润(万元)
1
2
3
1.8
2.9
 
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学有A、B、C、D、E五名同学在高三“一检”中的名次依次为1,2,3,4,5名,“二检”中的前5名依然是这五名同学.
(1)求恰好有两名同学排名不变的概率;
(2)如果设同学排名不变的同学人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.

(1)求直方图中的值及甲班学生每天平均学习时间在区间的人数;
(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

同步练习册答案