精英家教网 > 高中数学 > 题目详情
直线y=x+b与抛物线x2=2y交于A、B两点(异于坐标原点O),且OA⊥OB,则b的值为(  )
分析:联立直线和抛物线方程,化为关于x的一元二次方程后利用根与系数关系求出两个交点的横纵坐标的积,由OA⊥OB转化为其数量积等于0,代入坐标的乘积后求解b的值.
解答:解:联立
y=x+b
x2=2y
,得:x2-2x-2b=0.
因为直线y=x+b与抛物线x2=2y交于A、B两点,
则(-2)2-4×(-2b)=4+8b>0.
且x1+x2=2,x1x2=-2b.
y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2
=-2b+2b+b2=b2
由OA⊥OB,得
OA
OB
=0

即x1x2+y1y2=0,-2b+b2=0,因为b≠0,所以b=2.
满足△=4+8×2=20>0.
故选A.
点评:本题考查了直线与圆锥曲线的关系,考查了利用数量及判断两个向量的垂直关系,训练了一元二次方程的根与系数的关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题

(本小题满分13分)

已知双曲线C: =1(a>0,b>0)的离心率为焦点到渐近线的距离为

(1)求双曲线C的方程;

(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物

线y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年河南省许昌市长葛三高高考数学调研试卷1(理科)(解析版) 题型:解答题

已知直L1:2x-y=0,L2:x-2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.
(Ⅰ)求圆心M的轨迹方程M;
(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=-2x上存在点N使得|NA|=|NB|成立,求k的取值范围.

查看答案和解析>>

同步练习册答案