精英家教网 > 高中数学 > 题目详情
已知命题p:对?x∈R,ax2+5>0,命题q:2x2+x-1>0,若命题p∨q为真命题,则实数x的取值范围为
 
考点:复合命题的真假
专题:计算题,简易逻辑
分析:由题意,假设命题p、q为真化简,由命题p∨q为真命题知,p、q至少一个为真即可,从而求解.
解答: 解:若命题p:对?x∈R,ax2+5>0,为真命题,则a≥0,
若命题q:2x2+x-1>0为真,则-1<x<
1
2

则若命题p∨q为真命题,则实数x的取值范围为R.
故答案为:R.
点评:本题考查了复合命题的真假性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)若a>1时,求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
ax2
+2x+1(a∈R).
(Ⅰ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,设函数g(x)=ex(ex+a),x∈[0,ln2],求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对大于1的自然数m的三次幂,可用奇数进行以下方式的拆分:
23=3+5
33=7+9+11
43=13+15+17+19

若1331在m3的拆分中,第一项的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性;
(3)求f(x)在区间[-3,3]上的值域;
(4)若任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x2-mx-8在[5,20]具有单调性,则实数的取值范围为(  )
A、(-∞,-160]∪[160,+∞)
B、(-∞,40]∪[160,+∞)
C、(-∞,-160]∪[40,+∞)
D、[40,160]

查看答案和解析>>

科目:高中数学 来源: 题型:

6名学生排成一列,则学生甲、乙在学生丙不同侧的排位方法种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
-1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={(x,y)|x+y<4,x,y∈N*},则集合P的非空子集个数是(  )
A、2B、3C、7D、8

查看答案和解析>>

同步练习册答案