精英家教网 > 高中数学 > 题目详情
已知有一列数
1
2
2
3
3
4
,…,
n
n+1
,设计框图实现求该列数前20项的和.
分析:根据已知条件累加求和,利用循环结构S=S+
i
i+1
,画出程序框图.
解答:解:因为S=
1
2
+
2
3
+
3
4
+…+
20
20+1
,利用循环结构S=S+
i
i+1

程序框图如图(左图或右图):
点评:本题考查程序框图以及计算机语言,画程序框图首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的连接方式,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9

(Ⅰ)若右图为统计这次比赛的局数n和甲、乙的总得分数S、T的程序框图.其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.请问在第一、第二两个判断框中应分别填写什么条件?
(Ⅱ)求p的值;
(Ⅲ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
注:“n=0”,即为“n←0”或为“n:=0”.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>
1
2
),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9

(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为
1
2
,参加第五项不合格的概率为
2
3

(1)求该生被录取的概率;
(2)记该生参加考试的项数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分.比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立,已知第二局比赛结束时比赛停止的概率为
5
9
,若右图为统计这次比赛的局数和甲乙的总得分数S,T的程序框图,其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.
(I)求p的值;
(Ⅱ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列数学望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两同学进行下棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一个人比对方多2分或比满8局时停止,设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
8

(I)如图为统计这次比赛的局数n和甲、乙的总得分S,T的程序框图.其中如果甲获胜,输人a=l.b=0;如果乙获胜,则输人a=0,b=1.请问在①②两个判断框中应分别填写什么条件?
(Ⅱ)求p的值;
(Ⅲ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和Eξ.

查看答案和解析>>

同步练习册答案