精英家教网 > 高中数学 > 题目详情
已知向量
b
=(m,sin2x),
c
=(cos2x,n),x∈R,f(x)=
b
c
,若函数f(x)的图象经过点(0,1)和(
π
4
,1)

(I)求m、n的值;
(II)求f(x)的最小正周期,并求f(x)在x∈[0,
π
4
]
上的最小值;
(III)当f(
α
2
)=
1
5
,α∈[0,π]
时,求sinα的值.
(I)f(x)=mcos2x+nsin2x,
∵f(0)=1,
∴m=1.∵f(
π
4
)=1
,∴n=1.

(II)f(x)=cos2x+sin2x=
2
sin(2x+
π
4
)

∴f(x)的最小正周期为π.
x∈[0,
π
4
]
,∴
π
4
≤2x+
π
4
4

∴当x=0或x=
π
4
时,f(x)的最小值为1.

(III)∵f(
a
2
)=
1
5
,∴cosα+sinα=
1
5
,∴cosα=
1
5
-sinα

两边平方得25sin2α-5sinα-12=0,
解得sinα=
4
5
sinα=-
3
5

∵α∈[0,π],∴sinα=
4
5
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量:
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),(其中ω>0),函数f(x)=
m
n
,若f(x)相邻两对称轴间的距离为
π
2

(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积S=5
3
,b=4,f(A)=1,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)设△ABC的内角A,B,C的对边分别为a,b,c,已知向量,
m
=(a,-c)
n
=(cosA,cosB)
p
=(a,b)
q
=(cos(B+C),cosC)
m
n
=
p
q
,a=
13
,c=4

(1)求cosA的值;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:沅江市模拟 题型:解答题

已知向量:
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),(其中ω>0),函数f(x)=
m
n
,若f(x)相邻两对称轴间的距离为
π
2

(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积S=5
3
,b=4,f(A)=1,求边a的长.

查看答案和解析>>

科目:高中数学 来源:宝鸡模拟 题型:解答题

设△ABC的内角A,B,C的对边分别为a,b,c,已知向量,
m
=(a,-c)
n
=(cosA,cosB)
p
=(a,b)
q
=(cos(B+C),cosC)
m
n
=
p
q
,a=
13
,c=4

(1)求cosA的值;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量:m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2sinωx)(其中ω>0),函数f(x)=m·n,若f(x)相邻两对称轴间的距离为.

(1)求ω的值,并求f(x)的最大值及相应x的集合;

(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积S=5,b=4,f(A)=1,求边a的长.

查看答案和解析>>

同步练习册答案