精英家教网 > 高中数学 > 题目详情

已知点A,B,C都在椭圆数学公式上,AB、AC分别过两个焦点F1、F2,当数学公式时,有数学公式成立.
(1)求此椭圆的离心率;
(2)设数学公式.当点A在椭圆上运动时,求证m+n始终是定值.

解:(1)当时,74

由椭圆定义,得

在Rt△AF1F2中,∵
.∴
(2)由,得,∴b=c.
椭圆方程化为,即x2+2y2=2b2
焦点F1(-b,0),F2(b,0),
设A(x0,y0),B(x1,y1),C(x2,y2).
①当直线AC的斜率存在时,直线AC的方程为
代入椭圆方程,得(3b2-2bx0)y2+2by0(x0-b)y-b2y02=0.
,则

同理可得
②当直线AC的斜率不存在时,
综上所述,m+n是定值6.2
分析:(1)欲求椭圆的离心率,只需得到a,c的齐次式,根据当时,有成立,以及椭圆定义,即可得到.
(2)由(1)中求得的椭圆的离心率,可把椭圆化简成只有一个参数的形式,求出焦点F1,F2坐标,设出直线AC的方程,与椭圆方程联立,再根据,分别用参数的式子表示m,n,计算m+n,消去参数,可得一定值,问题得证.
点评:本题考查了椭圆离心率的求法,以及直线和椭圆联立,韦达定理得应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•无锡二模)已知点A,B,C都在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上,AB、AC分别过两个焦点F1、F2,当
.
AC
.
F1F2
=0
时,有
.
AF1
.
AF2
=
1
9
.
AF1
2
成立.
(1)求此椭圆的离心率;
(2)设
AF1
=m
F1B
AF2
=n
F2C
.当点A在椭圆上运动时,求证m+n始终是定值.

查看答案和解析>>

科目:高中数学 来源:2008年广东地区数学科全国各地模拟试题直线与圆锥曲线大题集 题型:044

已知点A,B,C都在椭圆上,AB、AC分别过两个焦点F1、F2,当时,有成立.

(1)求此椭圆的离心率;

(2)设.当点A在椭圆上运动时,求证m+n始终是定值.

查看答案和解析>>

科目:高中数学 来源:无锡二模 题型:解答题

已知点A,B,C都在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上,AB、AC分别过两个焦点F1、F2,当
.
AC
.
F1F2
=0
时,有
.
AF1
.
AF2
=
1
9
.
AF1
2
成立.
(1)求此椭圆的离心率;
(2)设
AF1
=m
F1B
AF2
=n
F2C
.当点A在椭圆上运动时,求证m+n始终是定值.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省苏锡常镇四市高考数学二模试卷(解析版) 题型:解答题

已知点A,B,C都在椭圆上,AB、AC分别过两个焦点F1、F2,当时,有成立.
(1)求此椭圆的离心率;
(2)设.当点A在椭圆上运动时,求证m+n始终是定值.

查看答案和解析>>

同步练习册答案