£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
¶þ½×¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨1£¬-1£©Ó루-2£¬1£©·Ö±ð±ä»»³Éµã£¨-1£¬-1£©Ó루0£¬-2£©£®
£¨¢ñ£©Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨¢ò£©ÉèÖ±ÏßlÔڱ任M×÷ÓÃϵõ½ÁËÖ±Ïßm£º2x-y=4£¬ÇólµÄ·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±Ïߵļ«×ø±ê·½³ÌΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
£¬Ô²MµÄ²ÎÊý·½³ÌΪ
x=2cos¦È
y=-2+2sin¦È
£¨ÆäÖЦÈΪ²ÎÊý£©£®
£¨¢ñ£©½«Ö±Ïߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóÔ²MÉϵĵ㵽ֱÏߵľàÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4Ò»5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©=|x-1|+|x+3|£®
£¨¢ñ£©ÇóxµÄÈ¡Öµ·¶Î§£¬Ê¹f£¨x£©Îª³£Êýº¯Êý£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©-a¡Ü0Óн⣬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©£¨I£©M=
ab
cd
£¬ÓÉÒÑÖª¶þ½×¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨1£¬-1£©Ó루-2£¬1£©·Ö±ð±ä»»³Éµã£¨-1£¬-1£©Ó루0£¬-2£©£®¿É¹¹Ôì¹ØÓÚa£¬b£¬c£¬dµÄËÄÔªÒ»´Î·½³Ì×飬½â·½³Ì×é¿ÉµÃ¾ØÕóM£¬½ø¶øµÃµ½¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨¢ò£©ÓÉ£¨I£©ÖоØÕóM¼°Ö±ÏßlÔڱ任M×÷ÓÃϵõ½ÁËÖ±Ïßm£º2x-y=4£¬¹¹Ôì¹ØÓÚx£¬yµÄ¹Øϵʽ£¬ÕûÀíºó¿ÉµÃlµÄ·½³Ì£®
£¨2£©£¨I£©ÓÉÒÑÖªÖ±Ïߵļ«×ø±ê·½³ÌΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
£¬¸ù¾Ýy=¦Ñsin¦È£¬x=¦Ñcos¦È¿ÉµÃÖ±Ïß·½³Ì£¬¸ù¾ÝÔ²MµÄ²ÎÊý·½³ÌΪ
x=2cos¦È
y=-2+2sin¦È
ÀûÓÃÈý½Çº¯Êýƽ·½¹Øϵ£¬ÏûÈ¥²ÎÊý£¬¿ÉµÃÔ²µÄ·½³Ì£®
£¨II£©¸ù¾Ý£¨I£©ÖÐËùµÃÖ±ÏßÓëÔ²µÄ·½³Ì£¬½«Ô²ÐÄ×ø±ê¼°Ö±Ïß·½³Ì´úÈëµãµ½Ö±Ïß¾àÀ빫ʽ£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼õµôÔ²°ë¾¶£¬¿ÉµÃÔ²Éϵ㵽ֱÏßµÄ×î½ü¾àÀ룮
£¨3£©£¨I£©ÀûÓÃÁãµã·Ö¶Î·¨£¬¿É½«º¯ÊýµÄ½âÎöʽ»¯ÎªÒ»¸ö·Ö¶Îº¯ÊýµÄÐÎʽ£¬½ø¶øµÃµ½f£¨x£©Îª³£Êýº¯Êýʱ£¬xµÄÈ¡Öµ·¶Î§
£¨II£©·ÖÎöº¯ÊýµÄÖµÓò£¬½ø¶ø¸ù¾Ý¹ØÓÚxµÄ²»µÈʽf£¨x£©-a¡Ü0Óн⣬a²»Ð¡ÓÚº¯Êý×î´óÖµ£¬¿ÉµÃ´ð°¸£®
½â´ð£º£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
½â£º£¨¢ñ£©ÉèM=
ab
cd
£¬ÔòÓÐ
ab
cd
1
-1
=
-1
-1
£¬
ab
cd
-2
1
=
0
-2
£¬
ËùÒÔ
a-b=-1
c-d=-1
£¬ÇÒ
-2a+b=0
-2c+d=-2
£¬
½âµÃ
a=1
b=2
c=3
d=4

ËùÒÔM=
12
34
£¬´Ó¶ø|M|=-2£¬
´Ó¶øM-1=
-2
3
2

£¨¢ò£©ÒòΪ
x¡ä
y¡ä
=
12
34
x
y
=
x+2y
3x+4y

ÇÒm£º2x'-y'=4£¬ËùÒÔ2£¨x+2y£©-£¨3x+4y£©=4£¬
¼´x+4=0£¬Õâ¾ÍÊÇÖ±ÏßlµÄ·½³Ì
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½â£º£¨¢ñ£©¡ß¦Ñsin(¦È+
¦Ð
4
)=
2
2

¡à
2
2
(¦Ñsin¦È+¦Ñcos¦È)=
2
2
£¬¡à¦Ñsin¦È+¦Ñcos¦È=1£®
ËùÒÔ£¬¸ÃÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ£ºx+y-1=0£®
£¨¢ò£©Ô²MµÄÆÕͨ·½³ÌΪ£ºx2+£¨y+2£©2=4
Ô²ÐÄM£¨0£¬-2£©µ½Ö±Ïßx+y-1=0µÄ¾àÀëd=
|0-2-1|
2
=
3
2
2
£®
ËùÒÔ£¬Ô²MÉϵĵ㵽ֱÏߵľàÀëµÄ×îСֵΪ
3
2
2
-2£®
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£© Ñ¡ÐÞ4Ò»5£º²»µÈʽѡ½²
½â£º£¨¢ñ£©f£¨x£©=|x-1|+|x+3|=
-2x-2£¬x£¼-3
4£¬-3¡Üx¡Ü1
2x+2£¬x£¾1

Ôòµ±x¡Ê[-3£¬1]ʱ£¬f£¨x£©Îª³£º¯Êý£®                 
£¨¢ò£©·¨Ò»£º»­Í¼£¬ÓÉ£¨1£©µÃº¯Êýf£¨x£©µÄ×îСֵΪ4£¬
·¨¶þ£º|x-1|+|x+3|¡Ý|x-1-£¨x+3£©|£»
¡à|x-1|+|x+3|¡Ý4£¬
µÈºÅµ±ÇÒ½öµ±x¡Ê[-3£¬1]ʱ³ÉÁ¢£®
µÃº¯Êýf£¨x£©µÄ×îСֵΪ4£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îªa¡Ý4£®
µãÆÀ£º±¾ÌâÊÇÑ¡ÐÞÈýÑ¡Ò»£¬£¨1£©µÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ¾ØÕóÔËË㹫ʽ£¬£¨2£©µÄ¹ØϵÊǽ«¼«×ø±ê·½³ÌºÍ²ÎÊý·½³Ìת»¯ÎªÒ»°ã·½³Ì£¬£¨3£©µÄ¹Ø¼üÊÇÓÃÁãµã·Ö¶Î·¨£¬»¯¼òº¯ÊýµÄ½âÎöʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕÊ¡µ¤ÑôÊÐ08-09ѧÄê¸ß¶þÏÂѧÆÚÆÚÄ©²âÊÔ£¨Àí£© ÌâÐÍ£º½â´ðÌâ

 £¨±¾ÌâÊÇÑ¡×öÌ⣬Âú·Ö28·Ö£¬ÇëÔÚÏÂÃæËĸöÌâÄ¿ÖÐÑ¡Á½¸ö×÷´ð£¬Ã¿Ð¡Ìâ14·Ö£¬¶à×ö°´Ç°Á½Ìâ¸ø·Ö£©

A£®(Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²)

Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£¬ÈôPE£½PA£¬£¬PD£½1£¬BD£½8£¬ÇóÏ߶ÎBCµÄ³¤.

 

 

 

 

 

 

B£®(Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»)

ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²£¬¾ØÕóÕ󣬣¬ÇóÔÚ¾ØÕó×÷ÓÃϱ任ËùµÃµ½µÄͼÐεÄÃæ»ý.

C£®(Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì)

Ö±Ïß(Ϊ²ÎÊý£¬Îª³£ÊýÇÒ)±»ÒÔÔ­µãΪ¼«µã£¬ÖáµÄÕý°ëÖáΪ¼«Öᣬ·½³ÌΪµÄÇúÏßËù½Ø£¬Çó½ØµÃµÄÏÒ³¤.

D£®(Ñ¡ÐÞ4-5£º²»µÈʽѡ½²)

É裬ÇóÖ¤£º.

 

 

 

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸