精英家教网 > 高中数学 > 题目详情
3.设α,β是两个不重合的平面,a,b是两条不同的直线,给出下列条件:
①α,β都平行于直线a,b;
②a,b是α内的两条直线,且a∥β,b∥β;
③a与b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的条件是②③.(填序号)

分析 根据面面平行的判定定理,分别判断,即可得出结论.

解答 解:①α,β都平行于直线a,b,α,β可能相交、平行,不正确;
②a,b是α内的两条直线,且a∥β,b∥β,根据面面平行的判定定理,可知正确;
③a与b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,根据面面平行的判定定理,可知正确.
故答案为②③.

点评 本题考查了面面平行的判定定理,空间线面位置关系,正确运用面面平行的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若b2+c2-a2=bc,则角A的值为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$z=\frac{10i}{3+i}$(i为虚数单位)的虚部为(  )
A.1B.3C.-3D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(2)(3).
(1)A′C⊥BD;
(2)∠BA′C=90°;
(3)四面体A′-BCD的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}中,a1=3,a8=9,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f'(0)=(  )
A.36B.39C.312D.315

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P、Q分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ的面积为1,(0为原点),则线段PQ中点M的轨迹为(  )
A.双曲线x2-y2=1B.双曲线x2-y2=1的右支
C.半圆x2+y2=1(x<0)D.一段圆弧x2+y2=1(x>$\frac{{\sqrt{2}}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,若运行该程序后输出的值是$\frac{9}{19}$,则整数t的值是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=x-{e^{\frac{x}{a}}}(a>0)$.
(1)曲线y=f(x)在x=0处的切线恰与直线x-2y+1=0垂直,求a的值;
(2)若a=2,x∈[a,2a]求f(x)的最大值.

查看答案和解析>>

同步练习册答案