精英家教网 > 高中数学 > 题目详情
13.已知$f(x)=x-{e^{\frac{x}{a}}}(a>0)$.
(1)曲线y=f(x)在x=0处的切线恰与直线x-2y+1=0垂直,求a的值;
(2)若a=2,x∈[a,2a]求f(x)的最大值.

分析 (1)求导数,利用曲线y=f(x)在x=0处的切线恰与直线x-2y+1=0垂直,f′(0)=1-$\frac{1}{a}$,即可求a的值;
(2)若a=2,x∈[a,2a],求导数,确定f(x)在[2,4]上单调递减,即可求f(x)的最大值.

解答 解:(1)由$f(x)=x-{e^{\frac{x}{a}}}(a>0)$,得:f′(x)=1-$\frac{1}{a}{e}^{\frac{x}{a}}$,…(2分)
则f′(0)=1-$\frac{1}{a}$,…(3分)
所以1-$\frac{1}{a}$=-2 得a=$\frac{1}{3}$.…(4分)
(2)a=2,$f(x)=x-{e^{\frac{x}{2}}},x∈[2,4],f'(x)=1-\frac{1}{2}{e^{\frac{x}{2}}}=0$(6分)
$\frac{1}{2}{e^{\frac{x}{2}}}=1,{e^{\frac{x}{2}}}=2,\frac{x}{2}=ln2,x=2ln2$(7分)
f(x)在(-∞,2ln2)上单调递增,在(2ln2,+∞)上单调递减    (8分)
又2ln2<2                                           (9分)
∴f(x)在[2,4]上单调递减                             (10分)
∴f(x)的最大值=2-e(12分)

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设α,β是两个不重合的平面,a,b是两条不同的直线,给出下列条件:
①α,β都平行于直线a,b;
②a,b是α内的两条直线,且a∥β,b∥β;
③a与b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的条件是②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上右支上一点,N为线段PF1的中点,O为双曲线的中心,若|PF1|=5,则线段ON的长度为1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}中,a1=3,${a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),则an=$\frac{3}{2}({3^n}-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在单调递增的等比数列{an}中,${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,则$\frac{a_4}{a_1}$=(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式tanx≥-$\frac{{\sqrt{3}}}{3}$的解集为$[-\frac{π}{6}+kπ,\frac{π}{2}+kπ)(k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.全集U=R,函数f(x)=$\frac{1}{\sqrt{sinx-\frac{1}{2}}}$+lg(2-x2)的定义域为集合A,集合B={x|x2-a<0}.
(1)求∁UA;
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.12+4$\sqrt{3}$B.12C.$8+2\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是函数y=Asin(ωx+φ)(x∈R)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.为了得到这个函数的图象,只需将y=sinx(x∈R)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标伸长到原来的2倍
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标伸长到原来的2倍

查看答案和解析>>

同步练习册答案