精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,则
1
|AF|
+
1
|BF|
=
 
分析:根据抛物线方程可求得焦点坐标和准线方程,设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2的值,又根据抛物线定义可知|AF|=x1+1,|BF|=x2+1代入
1
|AF|
+
1
|BF|
答案可得.
解答:解:易知F坐标(1,0)准线方程为x=-1.
设过F点直线方程为y=k(x-1)
代入抛物线方程,得 k2(x-1)2=4x.
化简后为:k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2
则有x1x2=1
根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1
1
|AF|
+
1
|BF|
=
x1+1+x2+1
(x1+1)(x2+1) 
=
x1+x2+2
x1+x2+x1x2+1 
=
x1+x2+2
x1+x2+2
=1
故答案为1
点评:本题主要考查抛物线的应用和抛物线定义.对于过抛物线焦点的直线与抛物线关系,常用抛物线的定义来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案