精英家教网 > 高中数学 > 题目详情
2.下列函数,是奇函数且在区间(0,1)上是减函数的是(  )
A.$y=1o{g_{\frac{1}{2}}}x$B.y=2xC.$y=\frac{1}{x}$D.$y={x^{-\frac{2}{3}}}$

分析 A,B既不是奇函数,也不是偶函数,D是偶函数,C是奇函数且在区间(0,1)上是减函数,即可得出结论.

解答 解:A,B既不是奇函数,也不是偶函数,D是偶函数,C是奇函数且在区间(0,1)上是减函数.
故选:C.

点评 本题考查函数的奇偶性、单调性,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.计算lg4+lg25+4${\;}^{-\frac{1}{2}}$-(4-π)0=$\frac{3}{2}$.
若sinθ+cosθ=$\frac{3\sqrt{5}}{5}$,θ∈(0,$\frac{π}{4}$),则cos2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)当x∈(0,+∞)时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设不等式|x-$\frac{1}{2}$|>$\frac{3}{2}$的解集为A,函数g(x)=$\sqrt{\frac{3}{x}-1}$的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p≤0.且α是β的充分不必要条件,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|x<2},B={x|x<a},若A?B,则实数a的取值范围是(  )
A.{a|a<2}B.{a|a≤2}C.{a|a≥2}D.{a|a>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a、b的值;
(2)若c=1,求在点(0,f(0))处的切线方程.
(3)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集I=R,集合A={x|y=$\sqrt{1-x}$},集合B={x|0≤x≤2},则(∁IA)∪B等于(  )
A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若幂函数y=xa过点(2,4),则函数y=loga(x2-2x-3)的单调减区间为(-∞,-1).

查看答案和解析>>

同步练习册答案