(09年湖北鄂州5月模拟理)(13分)数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N+总有an,Sn,成等差数列.
⑴求数列{an}的通项公式;
⑵设数列{bn}的前n项和为Tn,且.求证:对任意x∈(1,e]和n∈N+,总有Tn<2;
⑶正数数列{an}中,an+1=(cn)n+1(n∈N+).求数列{cn}中的最大项.
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟理)(12分)如图,已知四棱锥P―ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60o,E、F 分别是BC、PC的中点.
⑴证明:AE⊥PD;
⑵若H为PD上的动点,EH与平面PAD所成最大角的正
切值为,求二面角E―AF―C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟理)已知两定点A(-3,0),B(3,0),动圆M与直线AB相切于点N,且,现分别过点A、B作动圆M的切线(异于直线AB),两切线相交于点P.
⑴求动点P的轨迹方程;
⑵若直线xmy3=0截动点P的轨迹所得的弦长为5,求m的值;
⑶设过轨迹上的点P的直线与两直线分别交于点P1、P2,且点P分有向线段所成的比为λ(λ>0),当λ∈时,求的最值.查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟理)(14分)设函数.
⑴求f (x)的单调区间和极值;
⑵是否存在实数a,使得关于x的不等式f (x)≥a的解集为(0,+∞)?若存在,求a的取值范围;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟文)(13分)设f (x)=,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,
xn+1=f (xn)(n∈N*).
⑴求数列{xn}的通项公式;
⑵已知数列{an}满足,,求证:对一切n≥2的正整数都满足.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com