科目:高中数学 来源:黑龙江省佳木斯市2008届高三第二次摸底考试理科数学试卷 题型:044
已知a,b,c∈R,且三次方程f(x)=x3-ax2+bx-c=0有三个实根x1,x2,x3.
(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;
(2)若a,b,c均大于零,证明:x1、x2、x3都大于零;
(3)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β处取得极值,且-1<α<0<β<1,试求此方程三个根两两不等时c的取值范围.
查看答案和解析>>
科目:高中数学 来源:广东省潮州金山中学2010-2011学年高二下学期期中考试数学文科试卷 题型:044
若实数m,n为关于x的一元二次方程Ax2+Bx+C=0的两个实数根,则有Ax2+Bx+C=A(x-m)(x-n),由系数可得:m+n=-
,且m·n=
.设x1,x2,x3为关于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三个实数根.
(1)写出三次方程的根与系数的关系;即x1+x2+x3=_________;x1x2+x2x3+x3x1=_________;x1·x2·x3=_________
(2)若a,b,c均大于零,试证明:x1,x2,x3都大于零
(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β处取得极值,且-1<α<β<1,求方程f(x)=0三个实根两两不相等时,实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源:专项题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
已知a,b,c
R,且三次方程
有三个实根![]()
(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;
(2)若a,b,c均大于零,证明:x1、x2、x3都大于零;
(3)若
处取得极值,且
试求此方程三个根两两不等时c的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com