精英家教网 > 高中数学 > 题目详情
13.图中的两条曲线分别表示某理想状态下捕食者和被捕食者数量随时间的变化规律.对捕食者和被捕食者数量之间的关系描述正确的是(  )
A.B.
C.D.

分析 由已知可得:捕食者和被捕食者数量与时间以10年为周期呈周期性变化,故捕食者和被捕食者数量之间的关系应为环状,进而得到答案.

解答 解:由已知中某理想状态下捕食者和被捕食者数量随时间的变化规律.
可得捕食者和被捕食者数量与时间以10年为周期呈周期性变化,
故捕食者和被捕食者数量之间的关系应为环状,
故选:B

点评 本题考查的知识点是函数的图象,复变函数的图象和性质,本题比较抽象,理解起来有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若直线经过两点A(m,2),B(-m,2m-1)且倾斜角为45°,则m的值为(  )
A.$\frac{3}{4}$B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-6x+5.
(Ⅰ)求$f(-\sqrt{2}),f(a)+f(3)$的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如图所示,并得到适龄民众对放开生育二胎政策的态度数据如表:
生二胎不生二胎合计
25~35岁451055
35~50岁301545
合计7525100
(1)填写上面的2×2列联表;
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这个三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
 P(K2>k) 0.15 0.10 0.05 0.010
 k2.072 2.076 3.841 6.635
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.5名学生进行知识竞赛,笔试结束后,甲、乙两名参赛者去询问成绩,回答者对甲说:“你们5人的成绩互不相同,很遗憾,你的成绩不是最好的”;对乙说:“你不是最后一名”.根据以上信息,这5个人的笔试名次的所有可能的种数是(  )
A.54B.72C.78D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在等边△ABC中,D,E,F分别为AB,AC,BC的中点.将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF.

(Ⅰ)证明:AF⊥BC;
(Ⅱ)当∠BFC=120°时,求二面角A-DE-F的余弦值;
(Ⅲ)在(Ⅱ)的条件下,在线段BC上是否存在一点N,使得平面ABF⊥平面FDN?若存在,求出$\frac{{|{BN}|}}{{|{BC}|}}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆C1:x2+(y-1)2=1和圆C2:x2-6x+y2-8y=0的位置关系为(  )
A.相交B.内切C.外切D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线m,n和平面α,如果n?α,那么“m⊥n”是“m⊥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e为自然对数的底数,e=2.71828…).
(1)证明:函数f(x)为奇函数;
(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2-m+1)+f(-$\frac{3}{4}$)与0的大小关系;
(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[kea,keb].若存在,求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案