科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题
已知数列
满足
(I)求数列
的通项公式;
(II)若数列
中
,前
项和为
,且
证明:
![]()
【解析】第一问中,利用
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
第二问中,
![]()
进一步得到得
即![]()
即
是等差数列.
然后结合公式求解。
解:(I) 解法二、
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差数列.
![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
数列
,满足![]()
(1)求
,并猜想通项公式
。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到
,
,
,
,并猜想通项公式![]()
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,
等式成立。
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,所以当n=k+1时结论成立可证。
数列
,满足![]()
(1)
,
,
,
并猜想通项公
。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,
等式成立。 …5分
②假设n=k
时,
成立,
那么当n=k+1时,![]()
,
……9分
所以![]()
![]()
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n
均成立
查看答案和解析>>
科目:高中数学 来源:2014届四川省高一下学期期中理科数学试卷(解析版) 题型:解答题
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
查看答案和解析>>
科目:高中数学 来源:2014届四川省高一下学期期中理科数学试卷(解析版) 题型:解答题
已知数列
满足
,![]()
(1)求证:数列
是等比数列;
(2)求数列
的通项和前n项和
.
【解析】第一问中,利用
,得到
从而得证
第二问中,利用∴
∴
分组求和法得到结论。
解:(1)由题得
………4分
……………………5分
∴数列
是以2为公比,2为首项的等比数列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com